Optoelectronics Letters, Volume. 20, Issue 8, 449(2024)
Study on impedance spectroscopy based on dynamic equivalent circuit of solar cell
[1] [1] RAJU V N, PREMALATHA M, SIVA K R K D. A novel constant power management controller for hybrid PV-battery system[J]. Journal of circuits, systems and computers, 2020, 29(08): 2050119.
[2] [2] CONTRERAS-BERNAL L, RAMOS-TERRóN S, RIQUELME A, et al. Impedance analysis of perovskite solar cells: a case study[J]. Journal of materials chemistry A, 2019, 7(19): 12191-12200.
[3] [3] OMAR A, ALI M S, ABD RAHIM N. Electron transport properties analysis of titanium dioxide dyesensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: a review[J]. Solar energy, 2020, 207: 1088-1121.
[4] [4] COTFAS D, COTFAS P, KAPLANIS S. Methods and techniques to determine the dynamic parameters of solar cells[J]. Renewable and sustainable energy reviews, 2016, 61: 213-221.
[5] [5] KIM H S, MORA-SERO I, GONZALEZ-PEDRO V, et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells[J]. Nature communications, 2013, 4(1): 1-7.
[6] [6] GONZALEZ-PEDRO V, JUAREZ-PEREZ E J, ARSYAD W S, et al. General working principles of CH3NH3PbX3 perovskite solar cells[J]. Nano letters, 2014, 14(2): 888-893.
[7] [7] SANCHEZ R S, GONZALEZ-PEDRO V, LEE J W, et al. Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis[J]. The journal of physical chemistry letters, 2014, 5(13): 2357-2363.
[8] [8] SRIVASTAVA V, ALEXANDER A, ANITHA B, et al. Impedance spectroscopy study of defect/ion mediated electric field and its effect on the photovoltaic performance of perovskite solar cells based on different active layers[J]. Solar energy materials and solar cells, 2022, 237: 111548.
[9] [9] PASCOE A R, DUFFY N W, SCULLY A D, et al. Insights into planar CH3NH3PbI3 perovskite solar cells using impedance spectroscopy[J]. The journal of physical chemistry C, 2015, 119(9): 4444-4453.
[10] [10] COTFAS P A, COTFAS D T, BORZA P N, et al. Solar cell capacitance determination based on an RLC resonant circuit[J]. Energies, 2018, 11(3): 672.
[11] [11] BISQUERT J, BERTOLUZZI L, MORA-SERO I, et al. Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination[J]. The journal of physical chemistry C, 2014, 118(33): 18983-18991.
[12] [12] ABDULRAHIM S M, AHMAD Z, BAHADRA J, et al. Electrochemical impedance spectroscopy analysis of hole transporting material free mesoporous and planar perovskite solar cells[J]. Nanomaterials, 2020, 10(9).
[13] [13] KUMAR D K, SWAMI S K, DUTTA V, et al. Scalable screen-printing manufacturing process for graphene oxide platinum free alternative counter electrodes in efficient dye sensitized solar cells[J]. FlatChem, 2019, 15: 100105.
[14] [14] KATAYAMA N, OSAWA S, MATSUMOTO S, et al. Degradation and fault diagnosis of photovoltaic cells using impedance spectroscopy[J]. Solar energy materials and solar cells, 2019, 194: 130-136.
[15] [15] MO A Q, CAO D P, WANG W Y, et al. Comprehensive study of efficient dye-sensitized solar cells based on the binary ionic liquid electrolyte by modifying with additives and iodine[J]. Optoelectronics letters, 2017, 13(4): 263-267.
[16] [16] REN G, HAN W, ZHANG Q, et al. Overcoming perovskite corrosion and de-doping through chemical binding of halogen bonds toward efficient and stable perovskite solar cells[J]. Nano-micro letters, 2022, 14(11): 68-80.
[17] [17] ZHANG Z, LIANG J, WANG J, et al. Resolving mixed intermediate phases in methylammonium-free Sn-Pb alloyed perovskites for high-performance solar cells[J]. Nano-micro letters, 2022, 14(1): 1-19.
[18] [18] SUI M R, LI S P, GU X Q. Improved performance of perovskite solar cells through using (FA)x(MA)(1-x)PbI3optical absorber layer[J]. Optoelectronics letters, 2019, 15(02): 117-121.
[19] [19] GUO Q, WU H, JIN H, et al. Remote sensing inversion of suspended matter concentration using a neural network model optimized by the partial least squares and particle swarm optimization algorithms[J]. Sustainability, 2022, 14(4): 2221.
[20] [20] JWO D J, CHANG W Y, WU I H. Windowing techniques, the welch method for improvement of power spectrum estimation[J]. Computers, materials & continua, 2021, 6: 3983-4003.
[21] [21] BU T, LI J, LI H, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules[J]. Science, 2021, 372(6548): 1327-1332.
[22] [22] MEHMOOD U, ASLAM H Z, AL-SULAIMAN F A, et al. Electrochemical impedance spectroscopy and photovoltaic analyses of dye-sensitized solar cells based on carbon/TiO2 composite counter electrode[J]. Journal of the electrochemical society, 2016, 163(5): H339.
[23] [23] BECKER M, BERTRAMS M S, CONSTABLE E C, et al. How reproducible are electrochemical impedance spectroscopic data for dye-sensitized solar cells?[J]. Materials, 2020, 13(7): 1547.
[24] [24] YOO S M, YOON S J, ANTA J A, et al. An equivalent circuit for perovskite solar cell bridging sensitized to thin film architectures[J]. Joule, 2019, 3(10): 2535-2549.
[25] [25] OZAKI M, ISHIKURA Y, TRUONG M A, et al. Iodinerich mixed composition perovskites optimised for tin(iv) oxide transport layers: the influence of halide ion ratio, annealing time, and ambient air aging on solar cell performance[J]. Journal of materials chemistry A, 2019, 7(28): 16947-16953.
Get Citation
Copy Citation Text
XIAO Wenbo, LI Ao, WU Huaming, LI Yongbo, and XIAO Bangzh. Study on impedance spectroscopy based on dynamic equivalent circuit of solar cell[J]. Optoelectronics Letters, 2024, 20(8): 449
Received: Sep. 9, 2023
Accepted: Jan. 19, 2024
Published Online: Aug. 23, 2024
The Author Email: Wenbo XIAO (xiaowenbo1570@163.com)