Laser & Optoelectronics Progress, Volume. 47, Issue 10, 100501(2010)

Focusing Properties of High-Numerical Aperture Focusing

Chen Baosuan* and Pu Jixiong
Author Affiliations
  • [in Chinese]
  • show less
    References(19)

    [1] [1] Zhang Zhiming, Pu Jixiong, Wang Xiqing. Focusing of cylindrically polarized Bessel-Gaussian beams through a high numerical-aperture lens[J]. Chinese J. Lasers, 2008, 35(3): 401~405

    [2] [2] N. Bokor, N. Davidson. A three dimensional dark focal spot uniformly surrounded by light[J]. Opt. Commun., 2007, 279(2): 229~234

    [3] [3] T. Grosjean, D. Courjon. Smallest focal spots[J]. Opt. Commun., 2007, 272(2): 314~319

    [4] [4] E. P. Walker, T. D. Milster. Beam shaping for optical data storage[J]. SPIE Int. Soc. Opt. Eng., 2001, 4443: 73~92

    [5] [5] K. S. Youngworth, T. G. Brown. Focusing of high numerical aperture cylindrical vector beams[J]. Opt. Express, 2000, 7(2): 77~87

    [6] [6] L. E. Helseth. Focusing of atoms with strongly confined light potentials[J]. Opt. Commun., 2002, 212(4-6): 343~352

    [7] [7] E. Wolf. Electromagnetic diffraction in optical systems I. an integral representation of the image field[J]. R. Soc. Ser. A, 1959, 253(1274): 349~357

    [8] [8] G. M. Lerman, U. Levy. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization[J]. Opt. Lett., 2007, 32(15): 2194~2196

    [9] [9] J. W. M. Chon, X. Gan, M. Gu. Splitting of the focal spot of a high numerical-aperture objective in free space[J]. Appl. Phys. Lett., 2002, 81(9): 1576~1578

    [11] [11] Q. Zhan. Properties of circularly polarized vortex beams[J]. Opt. Lett., 2006, 31(7): 867~869

    [12] [12] R. K. Sing, P. Senthilkumaran, K. Singh. Effect of primary spherical aberration on high-numerical-aperture focusing of a Laguerre-Gaussian beam[J]. J. Opt. Soc. Am. A, 2008, 25(6): 1307~1318

    [13] [13] Z. Zhang, J. Pu, X. Wang. Tightly focusing of linearly polarized vortex beams through a dielectric interface[J]. Opt. Commun., 2008, 281(13): 3421~3426

    [14] [14] Z. Zhang, J. Pu, X. Wang. Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal[J]. Appl. Opt., 2008, 47(12): 1963~1967

    [15] [15] M. Gu. Advanced Optical Imaging Theory[M]. Heidelberg, New York: Springer-Verlag, 1999

    [16] [16] M. S. Soskin, M. V. Vasnetsov. Progress in Optics[M]. E. Wolf, ed., Amsterdam, Elsevier, 2001, 42: 219~276

    [17] [17] K. Lindfors, T. Setala, M. Kaivola et al.. Degree of polarization in tightly focused optical fields[J]. J. Opt. Soc. Am. A, 2005, 22(3): 561~568

    [18] [18] T. Setala, A. Shevchenko, M. Kaivola et al.. Degree of polarization for optical near fields[J]. Phys. Rev. E, 2002, 66(1): 016615

    [19] [19] L. Rao, J. Pu. Formation of small bottle light beams[J]. Chin. Phys. Lett., 2007, 24(12): 3352~3355

    Tools

    Get Citation

    Copy Citation Text

    Chen Baosuan, Pu Jixiong. Focusing Properties of High-Numerical Aperture Focusing[J]. Laser & Optoelectronics Progress, 2010, 47(10): 100501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Diffraction and Gratings

    Received: Apr. 16, 2010

    Accepted: --

    Published Online: Sep. 13, 2010

    The Author Email: Baosuan Chen (baosuan@hqu.edu.cn)

    DOI:10.3788/lop47.100501

    Topics