AEROSPACE SHANGHAI, Volume. 41, Issue 3, 130(2024)

Research Progress on the Working Mechanism of Ionic Liquid Electrospray Thrusters

Yuxiang CHEN*... Yufeng CHENG, Jinrui ZHANG, Guangchuan ZHANG, Haibin TANG and Weizong WANG |Show fewer author(s)
Author Affiliations
  • School of Astronautics, Beihang University, Beijing102206, China
  • show less
    References(69)

    [1] J R KOPACZ, R HERSCHITZ, J RONEY. Small satellites an overview and assessment. Acta Astronauti-ca, 170, 93-105(2020).

    [3] V KHAYMS. Advanced propulsion for microsatellites(2000).

    [4] J ZIEMER, C MARRESE-READING, C DUNN et al. Colloid microthruster flight performance results from space technology 7 disturbance reduction system, 47585(2017).

    [5] J ZELENY. The Electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 3, 69-91(1914).

    [6] JR V E KROHN. Liquid metal droplets for heavy particle propulsion, 73-80(1961).

    [7] JR V KROHN. Glycerol droplets for electrostatic propulsion, 435-440(1963).

    [8] M N HUBERMAN, J C BEYNON, E COHEN et al. Present status of colloid microthruster technology. Journal of Spacecraft and Rockets, 5, 1319-1324(1968).

    [9] M GAMERO-CASTANO, V HRUBY. Electrospray as a source of nanoparticles for efficient colloid thrust-ers. Journal of Propulsion and Power, 17, 977-987(2001).

    [10] G MALYSHEV, V KULKOV, A SHTYRLIN et al. Comparative analysis of the propulsion system for the small satellites, 1046-1051(1995).

    [11] D KREJCI, F MIER-HICKS, R THOMAS et al. Emission characteristics of passively fed electrospray mi-crothrusters with propellant reservoirs. Journal of Spacecraft and Rockets, 54, 447-458(2017).

    [12] C A ANGELL, Y ANSARI, Z ZHAO. Ionic liquids: past,present and future. Faraday Discussions, 154, 9-27(2012).

    [13] B L P GASSEND. A fully microfabricated two-dimensional electrospray array with applications to space propulsion(2007).

    [14] R S LEGGE, P C LOZANO. Electrospray propulsion based on emitters microfabricated in porous metals. Journal of Propulsion and Power, 27, 485-495(2011).

    [15] D G COURTNEY, H Q LI, P LOZANO. Emission measurements from planar arrays of porous ionic liquid ion sources. Journal of Physics D:Applied Physics, 45, 485203(2012).

    [16] C GUERRA-GARCIA, D KREJCI, P LOZANO. Spatial uniformity of the current emitted by an array of passively fed electrospray porous emitters. Journal of Physics D:Applied Physics, 49, 115503(2016).

    [17] D KREJCI, P LOZANO. Scalable ionic liquid electrospray thrusters for nanosatellites, 801-810(2016).

    [18] D KREJCI, F MIER-HICKS, C FUCETOLA et al. Design and characterization of a scalable ion elec-trospray propulsion system, 149(2015).

    [19] G LENGUITO, A GOMEZ. Scaling up the power of an electrospray mi-crothruster. Journal of Micromechanics and Microengineering, 24(2014).

    [20] S T OBER. Cubesat packaged electrospray thruster evaluation for enhanced operationally responsive space capabilities(2011).

    [21] D G COURTNEY, N ALVAREZ, N R DEMMONS. Electrospray thrusters for small spacecraft control: pulsed and steady state operation, 4654(2018).

    [22] X LIU, X KANG, W HE et al. Development and characterization of an ionic liquid electrospray thruster with a porous metal blade array, 471(2019).

    [24] H JIA, M CHEN, X LIU et al. Experimental study of a porous electrospray thruster with different number of emitter-strips. Plasma Science and Technology, 23, 104003(2021).

    [26] G I TAYLOR. Disintegration of water drops in an electric field. Proceedings of the Royal Society of Lon-don, 280, 383-397(1964).

    [27] J R MELCHER, G I TAYLOR. Electrohydrodynamics:a review of the role of interfacial shear stresses. Annual Review of Fluid Mechanics, 1, 111-146(1969).

    [28] D P H SMITH. The electrohydrodynamic atomization of liquids. IEEE Transactions on Industry Applica-tions, 3, 527-535(1986).

    [29] I AGUIRRE DE CARCER. Effect of background gas on the current emit-ted from Taylor cones. Journal of Colloid and Interface Science, 171, 512-517(1995).

    [30] I HAYATI, A I BAILEY, T F TADROS. Mechanism of stable jet formation in electrohydrodynamic atom-ization. Nature, 319, 41-43(1986).

    [32] C PANTANO, A M GAÑÁN-CALVO, A BARRERO. Zeroth-order,electrohydrostatic solution for elec-trospraying in cone-jet mode. Journal of Aerosol Science, 25, 1065-1077(1994).

    [33] A M GAÑÁN-CALVO, N REBOLLO-MUÑOZ, J M MONTANERO. The minimum or natural rate of flow and droplet size ejected by Taylor cone-jets: physical symmetries and scaling laws. New Journal of Physics, 15(2013).

    [34] A PONCE-TORRES, N REBOLLO-MUÑOZ, M A HERRADA et al. The steady cone-jet mode of elec-trospraying close to the minimum volume stability limit. Journal of Fluid Mechanics, 857, 142-172(2018).

    [35] M GAMERO-CASTANO, M MAGNANI. The minimum flow rate of electrosprays in the cone-jet mode. Journal of Fluid Mechanics, 876, 553-572(2019).

    [36] J NAVASCUES, F FERNÁNDEZ et al. Generation of submicron mono-disperse aerosols in electrosprays. Journal of Aerosol Science, 21, 673-676(1990).

    [37] I G LOSCERTALES. The current emitted by highly conducting Taylor c ‘ones. Journal of Fluid Mechanics, 260, 155-184(1994).

    [38] A M GAÑÁN-CALVO, J DAVILA, A BARRERO. Current and droplet size in the electrospraying of liq-uids, scaling laws. Journal of Aerosol Science, 28, 249-275(1997).

    [39] D R CHEN, D Y H PUI. Experimental investigation of scaling laws for electrospraying:dielectric constant effect. Aerosol Science and Technology, 27, 367-380(1997).

    [40] A M GAÑÁN-CALVO. Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Physical Review Letters, 79, 217-220(1997).

    [41] A M GAÑÁN-CALVO. On the general scaling theory for electrospraying. Journal of Fluid Mechanics, 507, 203-212(2004).

    [42] A MAIßER, M B ATTOUI, A M GAÑÁN-CALVO et al. Electro-hydrodynamic generation of monodis-perse nanoparticles in the sub-10 nm size range from strongly electrolytic salt solutions:governing parameters of scaling laws. Journal of Nanoparticle Research, 15, 1-13(2013).

    [43] A S ISMAIL, J YAO, H H XIA et al. Breakup length of electrified liquid jets:scaling laws and applica-tions. Physical Review Applied, 10(2018).

    [44] J ROSELL-LLOMPART, J GRIFOLL, I G LOSCERTALES. Electrosprays in the cone-jet mode:from Tay-lor cone formation to spray development. Journal of Aerosol Science, 125, 2-31(2018).

    [45] C CLANET, J C LASHERAS. Transition from dripping to jetting. Journal of Fluid Mechanics, 383, 307-326(1999).

    [46] J EGGERS, E VILLERMAUX. Physics of liquid jets. Reports on Progress in Physics, 71(2008).

    [47] L L F AGOSTINHO, C U YURTERI, E C FUCHS et al. Monodisperse water microdroplets generated by electrohydrodynamic atomization in the simple-jet mode. Applied Physics Letters, 100, 244105(2012).

    [48] M CLOUPEAU, B PRUNET-FOCH. Electrostatic spraying of liquids in cone-jet mode. Journal of Elec-trostatics, 22, 135-159(1989).

    [49] M CLOUPEAU, B PRUNET-FOCH. Electrohydrodynamic spraying functioning modes:a critical review. Journal of Aerosol Science, 25, 1021-1036(1994).

    [50] S VERDOOLD, L L F AGOSTINHO, C U YURTERI et al. A generic electrospray classification. Journal of Aerosol Science, 67, 87-103(2014).

    [51] D B BOBER, C H CHEN. Pulsating electrohydrodynamic cone-jets:from choked jet to oscillating cone. Journal of Fluid Mechanics, 689, 552-563(2011).

    [52] R P A HARTMAN, D J BRUNNER, D M A CAMELOT et al. Jet break-up in electrohydrodynamic atomization in the cone-jet mode. Journal of Aerosol Science, 31, 65-95(2000).

    [54] R KRPOUN, K L SMITH, J P W STARK et al. Tailoring the hydraulic impedance of out-of-plane mi-cromachined electrospray sources with integrated electrodes. Applied Physics Letters, 94, 163502(2009).

    [55] D V M MÁXIMO, L F VELÁSQUEZ-GARCÍA. Additively manufactured electrohydrodynamic ionic liq-uid pure-ion sources for nanosatellite propulsion. Additive Manufacturing, 36, 101719(2020).

    [56] M GAMERO-CASTANO, V HRUBY, D SPENCE et al. Micro newton colloid thruster system development for ST7-DRS mission, 4543(2003).

    [57] M GAMERO-CASTANO. Electric-field-induced ion evaporation from dielectric liquid. Physical Review Letters, 89, 147602(2002).

    [58] P C LOZANO. Energy properties of an EMI-Im ionic liquid ion source. Journal of Physics D:Applied Physics, 39, 126-134(2005).

    [59] P L WRIGHT, N M UCHIZONO et al. A novel variable mode emitter for electrospray thrust-ers, 650(2019).

    [60] J ZHANG, G CAI, A SHAHZAD et al. Ionic liquid electrospray behavior in a hybrid emitter electrospray thruster. International Journal of Heat and Mass Transfer, 175, 121369(2021).

    [61] J ZHANG, G CAI, X LIU et al. Molecular dynamics simulation of ionic liquid electrospray: revealing the effects of interaction potential models. Acta Astronautica, 179, 581-593(2021).

    [62] M GAMERO-CASTANO, V HRUBY. Electric measurements of charged sprays emitted by cone-jets. Journal of Fluid Mechanics, 459, 245-276(2002).

    [63] M DOLE, L L MACK, R L HINES et al. Molecular beams of macroions. The Journal of Chemical Physics, 49, 2240-2249(1968).

    [64] L RAYLEIGH. On the equilibrium of liquid conducting masses charged with electricity. The London, Ed-inburgh,and Dublin Philosophical Magazine and Journal of Science, 14, 184-186(1882).

    [65] J V IRIBARNE, B A THOMSON. On the evaporation of small ions from charged droplets. The Journal of Chemical Physics, 64, 2287-2294(1976).

    [66] K TANG, A GOMEZ. On the structure of an electrostatic spray of monodisperse droplets. Physics of Flu-ids, 6, 2317-2332(1994).

    [67] R P A HARTMAN, J P BORRA, D J BRUNNER et al. The evolution of electrohydrodynamic sprays produced in the cone-jet mode,a physical model. Journal of Electrostatics, 47, 143-170(1999).

    [68] A BORNER. Use of advanced particle methods in modeling space propulsion and its supersonic expan-sions(2014).

    [69] K EMOTO, T TSUCHIYA, Y TAKAO. Numerical investigation of steady and transient ion beam extraction mechanisms for electrospray thrusters. Transactions of the Japan Society for Aeronautical and Space Sci-ences, 16, 110-115(2018).

    [70] J K ZIEMER, C MARRESE-READING, S M ARESTIE et al. Incorporating lessons learned into LISA colloid microthruster technology development, 3814(2019).

    [71] R E WIRZ. Electrospray thruster performance and lifetime investigation for the LISA mission, 3816(2019).

    [72] M J DAVIS, A L COLLINS, R E WIRZ. Electrospray plume evolution via discrete simula-tions, 590(2019).

    [73] A THUPPUL, P L WRIGHT, A L Collins et al. Lifetime considerations for electrospray thrusters. Aero-space, 7, 108(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yuxiang CHEN, Yufeng CHENG, Jinrui ZHANG, Guangchuan ZHANG, Haibin TANG, Weizong WANG. Research Progress on the Working Mechanism of Ionic Liquid Electrospray Thrusters[J]. AEROSPACE SHANGHAI, 2024, 41(3): 130

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Innovation and Exploration

    Received: Apr. 9, 2024

    Accepted: --

    Published Online: Sep. 3, 2024

    The Author Email:

    DOI:10.19328/j.cnki.2096-8655.2024.03.014

    Topics