International Journal of Extreme Manufacturing, Volume. 6, Issue 2, 22001(2024)
Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing
[1] [1] Hao Y et al 2021 Recent progress of integrated circuits and optoelectronic chips Sci. China Inf. Sci. 64 201401
[2] [2] Jalali B and Fathpour S 2006 Silicon photonics J. Lightwave Technol. 24 4600–15
[3] [3] Soref R 2006 The past, present, and future of silicon photonics IEEE J. Sel. Top. Quantum Electron.12 1678–87
[4] [4] Thomson D et al 2016 Roadmap on silicon photonics J. Opt.18 073003
[5] [5] Dong P 2016 Silicon photonic integrated circuits for wavelength-division multiplexing applications IEEE J.Sel. Top. Quantum Electron. 22 6100609
[6] [6] Xu X Y, Han W W, Tan M X, Sun Y, Li Y, Wu J Y,Morandotti R, Mitchell A, Xu K and Moss D J 2023 Neuromorphic computing based on wavelength-division multiplexing IEEE J. Sel. Top. Quantum Electron. 29 7400112
[7] [7] Rahim A et al 2019 Open-access silicon photonics platforms in Europe IEEE J. Sel. Top. Quantum Electron.25 8200818
[8] [8] Hochberg M and Baehr-Jones T 2010 Towards fabless silicon photonics Nat. Photon. 4 492–4
[9] [9] Lin S, Hammood M, Yun H, Luan E X, Jaeger N A F and Chrostowski L 2020 Computational lithography for silicon photonics design IEEE J. Sel. Top. Quantum Electron.26 8201408
[10] [10] Chrostowski L et al 2019 Silicon photonic circuit design using rapid prototyping foundry process design kits IEEE J. Sel. Top. Quantum Electron. 25 8201326
[11] [11] Siew S Y et al 2021 Review of silicon photonics technology and platform development J. Lightwave Technol.39 4374–89
[12] [12] Shu H W et al 2022 Microcomb-driven silicon photonic systems Nature 605 457–63
[13] [13] Tong Y Y, Zhou W and Tsang H K 2018 Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193 nm DUV lithography Opt. Lett. 43 5709–12
[14] [14] Wang J W et al 2018 Multidimensional quantum entanglement with large-scale integrated optics Science 360 285–91
[15] [15] Wang J W, Sciarrino F, Laing A and Thompson M G 2020 Integrated photonic quantum technologies Nat. Photon.14 273–84
[16] [16] Bundalo I L et al 2022 PIXAPP photonics packaging pilot line—development of a silicon photonic optical transceiver with pluggable fiber connectivity IEEE J. Sel.Top. Quantum Electron. 28 8300311
[17] [17] Lindenmann N, Balthasar G, Hillerkuss D, Schmogrow R,Jordan M, Leuthold J, Freude W and Koos C 2012 Photonic wire bonding: a novel concept for chip-scale interconnects Opt. Express 20 17667–77
[18] [18] Nezami M S et al 2023 Packaging and interconnect considerations in neuromorphic photonic accelerators IEEE J. Sel. Top. Quantum Electron. 29 6100311
[19] [19] Xu X Y, Ren G H, Feleppa T, Liu X M, Boes A, Mitchell A and Lowery A J 2022 Self-calibrating programmable photonic integrated circuits Nat. Photon. 16 595–602
[20] [20] Zhu Y X, Mao H W, Zhu Y, Wang X J, Fu C Y, Ke S,Wan C J and Wan Q 2023 CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review Int. J. Extreme Manuf. 5 042010
[21] [21] Ashtiani F, Geers A J and Aflatouni F 2022 An on-chip photonic deep neural network for image classification Nature 606 501–6
[22] [22] Xu X Y et al 2021 11 TOPS photonic convolutional accelerator for optical neural networks Nature 589 44–51
[23] [23] Bai B W et al 2023 Microcomb-based integrated photonic processing unit Nat. Commun. 14 66
[24] [24] Huang C R et al 2021 A silicon photonic-electronic neural network for fibre nonlinearity compensation Nat. Electron.4 837–44
[25] [25] Tait A N, de Lima T F, Nahmias M A, Miller H B, Peng H T,Shastri B J and Prucnal P R 2019 Silicon photonic modulator neuron Phys. Rev. Appl. 11 064043
[26] [26] Kennedy P 2020 Lightmatter mars SoC AI inference using light (available at: www.servethehome.com/lightmattermars-soc-ai-inference-using-light/)
[27] [27] Shastri B J, Tait A N, Ferreira de Lima T, Pernice W H P,Bhaskaran H, Wright C D and Prucnal P R 2021 Photonics for artificial intelligence and neuromorphic computing Nat. Photon. 15 102–14
[28] [28] Feldmann J et al 2021 Parallel convolutional processing using an integrated photonic tensor core Nature 589 52–58
[29] [29] Zhou W, Farmakidis N, Feldmann J, Li X, Tan J, He Y H,Wright C D, Pernice W H P and Bhaskaran H 2022 Phase-change materials for energy-efficient photonic memory and computing MRS Bull. 47 502–10
[30] [30] Wong H S P and Salahuddin S 2015 Memory leads the way to better computing Nat. Nanotechnol. 10 191–4
[31] [31] Sebastian A, Le Gallo M, Khaddam-Aljameh R and Eleftheriou E 2020 Memory devices and applications for in-memory computing Nat. Nanotechnol. 15 529–44
[32] [32] Zidan M A, Strachan J P and Lu W D 2018 The future of electronics based on memristive systems Nat. Electron.1 22–29
[33] [33] Wang Z R, Wu H Q, Burr G W, Hwang C S, Wang K L,Xia Q F and Yang J J 2020 Resistive switching materials for information processing Nat. Rev. Mater. 5 173–95
[34] [34] Zhang Y et al 2020 Brain-inspired computing with memristors: challenges in devices, circuits, and systems Appl. Phys. Rev. 7 011308
[35] [35] Christensen D V et al 2022 2022 Roadmap on neuromorphic computing and engineering Neuromorph. Comput. Eng.2 022501
[36] [36] Wang S C et al 2023 Echo state graph neural networks with analogue random resistive memory arrays Nat. Mach.Intell. 5 104–13
[37] [37] Wang S J et al 2023 An organic electrochemical transistor for multi-modal sensing, memory and processing Nat.Electron. 6 281–91
[38] [38] Wuttig M and Yamada N 2007 Phase-change materials for rewriteable data storage Nat. Mater. 6 824–32
[39] [39] Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J and Wuttig M 2008 A map for phase-change materials Nat. Mater. 7 972–7
[40] [40] Wuttig M, Bhaskaran H and Taubner T 2017 Phase-change materials for non-volatile photonic applications Nat.Photon. 11 465–76
[41] [41] Song Z T, Song S N, Zhu M, Wu L C, Ren K, Song W X and Feng S L 2018 From octahedral structure motif to sub-nanosecond phase transitions in phase change materials for data storage Sci. China Inf. Sci. 61 081302
[42] [42] Xu Y Z, Zhou Y X, Wang X D, Zhang W, Ma E,Deringer V L and Mazzarello R 2022 Unraveling crystallization mechanisms and electronic structure of phase-change materials by large-scale ab initio simulations Adv. Mater. 34 2109139
[43] [43] Zhou Y X, Zhang W, Ma E and Deringer V L 2023 Device-scale atomistic modelling of phase-change memory materials Nat. Electron. 6 746–54
[44] [44] Ahmed S, Wang X D, Zhou Y X, Sun L, Mazzarello R and Zhang W 2021 Unraveling the optical contrast in Sb2Te and AgInSbTe phase-change materials J. Phys. Photon.3 034011
[45] [45] Zhang W, Mazzarello R, Wuttig M and Ma E 2019 Designing crystallization in phase-change materials for universal memory and neuro-inspired computing Nat. Rev. Mater.4 150–68
[46] [46] Zhang W and Ma E 2020 Unveiling the structural origin to control resistance drift in phase-change memory materials Mater. Today 41 156–76
[47] [47] Xu M, Mai X, Lin J, Zhang W, Li Y, He Y H, Tong H,Hou X, Zhou P and Miao X S 2020 Recent advances on neuromorphic devices based on chalcogenide phase-change materials Adv. Funct. Mater. 30 2003419
[48] [48] Xu M, Xu M and Miao X S 2022 Deep machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration InfoMat 4 e12315
[49] [49] Zhang Z H, Wang Z W, Shi T, Bi C, Rao F, Cai Y M, Liu Q,Wu H Q and Zhou P 2020 Memory materials and devices:from concept to application InfoMat 2 261–90
[50] [50] Youngblood N, Ríos Ocampo C A, Pernice W H P and Bhaskaran H 2023 Integrated optical memristors Nat.Photon. 17 561–72
[51] [51] Yamada N 1996 Erasable phase-change optical materials MRS Bull. 21 48–50
[52] [52] Wong H S P, Raoux S, Kim S, Liang J L, Reifenberg J P,Rajendran B, Asheghi M and Goodson K E 2010 Phase change memory Proc. IEEE 98 2201–27
[53] [53] Li X, Chen H P, Xie C C, Cai D L, Song S N, Chen Y F,Lei Y, Zhu M and Song Z T 2019 Enhancing the performance of phase change memory for embedded applications Phys. Status Solidi 13 1800558
[54] [54] Song Z T, Cai D L, Cheng Y, Wang L, Lv S L, Xin T J and Feng G M 2021 12-state multi-level cell storage implemented in a 128 Mb phase change memory chip Nanoscale 13 10455–61
[55] [55] Shportko K, Kremers S, Woda M, Lencer D, Robertson J and Wuttig M 2008 Resonant bonding in crystalline phase-change materials Nat. Mater. 7 653–8
[56] [56] Wuttig M, Deringer V L, Gonze X, Bichara C and Raty J Y 2018 Incipient metals: functional materials with a unique bonding mechanism Adv. Mater. 30 1803777
[57] [57] Kooi B J and Wuttig M 2020 Chalcogenides by design:functionality through metavalent bonding and confinement Adv. Mater. 32 1908302
[58] [58] Wang X D, Shen X Y, Sun S Y and Zhang W 2021 Tailoring the structural and optical properties of germanium telluride phase-change materials by indium incorporation Nanomaterials 11 3029
[59] [59] Zhang W et al 2023 Metavalent bonding in layered phase-change memory materials Adv. Sci. 10 2300901
[60] [60] Pernice W H P and Bhaskaran H 2012 Photonic non-volatile memories using phase change materials Appl. Phys. Lett.101 171101
[61] [61] Ríos C, Stegmaier M, Hosseini P, Wang D, Scherer T,Wright C D, Bhaskaran H and Pernice W H P 2015 Integrated all-photonic non-volatile multi-level memory Nat. Photon. 9 725–32
[62] [62] Feldmann J, Stegmaier M, Gruhler N, Ríos C, Bhaskaran H,Wright C D and Pernice W H P 2017 Calculating with light using a chip-scale all-optical abacus Nat. Commun.8 1256
[63] [63] Cheng Z G, Ríos C, Pernice W H P, Wright C D and Bhaskaran H 2017 On-chip photonic synapse Sci. Adv.3 e1700160
[64] [64] Cheng Z G, Ríos C, Youngblood N, Wright C D,Pernice W H P and Bhaskaran H 2018 Device-level photonic memories and logic applications using phase-change materials Adv. Mater. 30 1802435
[65] [65] Ríos C, Youngblood N, Cheng Z G, Le Gallo M, Pernice W H P, Wright C D, Sebastian A and Bhaskaran H 2019 In-memory computing on a photonic platform Sci.Adv. 5 eaau5759
[66] [66] Zheng J J et al 2020 Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater Adv. Mater. 32 2001218
[67] [67] Yang X, Nisar M S, Yuan W, Zheng F G, Lu L J, Chen J P and Zhou L J 2021 Phase change material enabled 2×2 silicon nonvolatile optical switch Opt. Lett. 46 4224–7
[68] [68] Sarwat S G, Moraitis T, Wright C D and Bhaskaran H 2022 Chalcogenide optomemristors for multi-factor neuromorphic computation Nat. Commun. 13 2247
[69] [69] Farmakidis N et al 2022 Electronically reconfigurable photonic switches incorporating plasmonic structures and phase change materials Adv. Sci. 9 2200383
[70] [70] Tan J Y S, Cheng Z G, Feldmann J, Li X, Youngblood N,Ali U E, Wright C D, Pernice W H P and Bhaskaran H 2022 Monadic Pavlovian associative learning in a backpropagation-free photonic network Optica 9 792–802
[71] [71] Zhou W, Dong B W, Farmakidis N, Li X, Youngblood N,Huang K R, He Y H, David Wright C, Pernice W H P and Bhaskaran H 2023 In-memory photonic dot-product engine with electrically programmable weight banks Nat.Commun. 14 2887
[72] [72] Li X, Youngblood N, Ríos C, Cheng Z G, Wright C D,Pernice W H and Bhaskaran H 2019 Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell Optica 6 1–6
[73] [73] Wu C M, Yu H S, Lee S, Peng R M, Takeuchi I and Li M 2021 Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network Nat. Commun. 12 96
[74] [74] Aggarwal S, Milne T, Farmakidis N, Feldmann J, Li X,Shu Y, Cheng Z G, Salinga M, Pernice W H and Bhaskaran H 2022 Antimony as a programmable element in integrated nanophotonics Nano Lett. 22 3532–8
[75] [75] Farmakidis N, Youngblood N, Li X, Tan J, Swett J L,Cheng Z G, Wright C D, Pernice W H P and Bhaskaran H 2019 Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality Sci. Adv.5 eaaw2687
[76] [76] Feldmann J, Youngblood N, Wright C D, Bhaskaran H and Pernice W H P 2019 All-optical spiking neurosynaptic networks with self-learning capabilities Nature 569 208–14
[77] [77] Song S, Miller K D and Abbott L F 2000 Competitive Hebbian learning through spike-timing-dependent synaptic plasticity Nat. Neurosci. 3 919–26
[78] [78] Rios C, Hosseini P, Wright C D, Bhaskaran H and Pernice W H P 2014 On-chip photonic memory elements employing phase-change materials Adv. Mater. 26 1372–7
[79] [79] Sarwat S G, Youngblood N, Au Y Y, Mol J A, Wright C D and Bhaskaran H 2018 Engineering interface-dependent photoconductivity in Ge2Sb2Te5 nanoscale devices ACS Appl. Mater. Interfaces 10 44906–14
[80] [80] Li X, Youngblood N, Cheng Z G, Carrillo S G C, Gemo E,Pernice W H P, Wright C D and Bhaskaran H 2020 Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing Optica 7 218–25
[81] [81] Zhang H Y, Zhou L J, Lu L J, Xu J, Wang N N, Hu H,Rahman B M A, Zhou Z P and Chen J P 2019 Miniature multilevel optical memristive switch using phase change material ACS Photonics 6 2205–12
[82] [82] Ríos C et al 2022 Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials PhotoniX 3 26
[83] [83] Zhang C P et al 2023 Nonvolatile multilevel switching of silicon photonic devices with In2O3/GST segmented structures Adv. Opt. Mater. 11 2202748
[84] [84] Shalaginov M Y et al 2021 Reconfigurable all-dielectric metalens with diffraction-limited performance Nat.Commun. 12 1225
[85] [85] Zhang Y F et al 2021 Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material Nat. Nanotechnol. 16 661–6
[86] [86] Khaddam-Aljameh R et al 2022 HERMES-core—A 1.59-TOPS/mm2 PCM on 14 nm CMOS in-memory compute core using 300-ps/LSB linearized CCO-based ADCs IEEE J. Solid-State Circuits 57 1027–38
[87] [87] Yamada N, Ohno E, Akahira N, Nishiuchi K I, Nagata K I and Takao M 1987 High speed overwritable phase change optical disk material Jpn. J. Appl. Phys. 26 61
[88] [88] Chen M, Rubin K A and Barton R W 1986 Compound materials for reversible, phase-change optical data storage Appl. Phys. Lett. 49 502–4
[89] [89] Yamada N and Matsunaga T 2000 Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory J. Appl. Phys. 88 7020–8
[90] [90] Fong S W, Neumann C M and Wong H S P 2017 Phase-change memory—towards a storage-class memory IEEE Trans. Electron. Dev. 64 4374–85
[91] [91] Cheng H Y, Carta F, Chien W C, Lung H L and BrightSky M J 2019 3D cross-point phase-change memory for storage-class memory J. Phys. D: Appl. Phys.52 473002
[92] [92] Chien W C et al 2019 Comprehensive scaling study on 3D cross-point PCM toward 1Znm node for SCM applications Symp. on VLSI Technology (IEEE) pp T60–T61
[93] [93] Cappelletti P, Annunziata R, Arnaud F, Disegni F, Maurelli A and Zuliani P 2020 Phase change memory for automotive grade embedded NVM applications J. Phys. D: Appl.Phys. 53 193002
[94] [94] Song Z T, Cai D L, Li X, Wang L, Chen Y F, Chen H P,Wang Q, Zhan Y P and Ji M H 2018 High endurance phase change memory chip implemented based on carbon-doped Ge2Sb2Te5 in 40 nm node for embedded application IEEE Int. Electron Devices Meeting (IEEE) pp 27.5.1–4
[95] [95] Arnaud F et al 2018 Truly innovative 28nm FDSOI technology for automotive micro-controller applications embedding 16MB phase change memory. IEEE Int.Electron Devices Meeting (IEDM) (IEEE) pp 18.4.1–4
[96] [96] Wright C D, Bhaskaran H and Pernice W H P 2019 Integrated phase-change photonic devices and systems MRS Bull. 44 721–7
[97] [97] Zhang B et al 2016 Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material Appl. Phys. Lett. 108 191902
[98] [98] Jiang T-T, Wang X-D, Wang J-J, Zhang H Y, Lu L, Jia C L,Wuttig M, Mazzarello R, Zhang W and Ma E 2022 In situ characterization of vacancy ordering in Ge-Sb-Te phase-change memory alloys Fundam. Res. (https://doi.org/10.1016/j.fmre.2022.09.010)
[99] [99] Loke D, Lee T H, Wang W J, Shi L P, Zhao R, Yeo Y C, Chong T C and Elliott S R 2012 Breaking the speed limits of phase-change memory Science336 1566–9
[100] [100] Rao F et al 2017 Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing Science 358 1423–7
[101] [101] Zewdie G M, Zhou Y X, Sun L, Rao F, Deringer V L,Mazzarello R and Zhang W 2019 Chemical design principles for cache-type Sc–Sb–Te phase-change memory materials Chem. Mater. 31 4008–15
[102] [102] Hu S W, Liu B, Li Z, Zhou J and Sun Z M 2019 Identifying optimal dopants for Sb2Te3 phase-change material by high-throughput ab initio calculations with experiments Comput. Mater. Sci 165 51–58
[103] [103] Chen B et al 2019 Kinetics features conducive to cache-type nonvolatile phase-change memory Chem. Mater.31 8794–800
[104] [104] Zhou Y X, Sun L, Zewdie G M, Mazzarello R, Deringer V L,Ma E and Zhang W 2020 Bonding similarities and differences between Y-Sb-Te and Sc-Sb-Te phase-change memory materials J. Mater. Chem. C 8 3646–54
[105] [105] Hu S W, Xiao J K, Zhou J, Elliott S R and Sun Z M 2020 Synergy effect of co-doping Sc and Y in Sb2Te3 for phase-change memory J. Mater. Chem. C 8 6672–9
[106] [106] Wang X P, Li X B, Chen N K, Bang J, Nelson R, Ertural C,Dronskowski R, Sun H B and Zhang S B 2020 Time-dependent density-functional theory molecular-dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation npj Comput. Mater.6 31
[107] [107] Chen X Z, Xue Y, Sun Y B, Shen J B, Song S N, Zhu M,Song Z T, Cheng Z G and Zhou P 2023 Neuromorphic photonic memory devices using ultrafast, non-volatile phase-change materials Adv. Mater. 35 2203909
[108] [108] van Pieterson L, Lankhorst M H R, van Schijndel M,Kuiper A E T and Roosen J H J 2005 Phase-change recording materials with a growth-dominated crystallization mechanism: a materials overview J. Appl.Phys. 97 083520
[109] [109] Lee B S, Burr G W, Shelby R M, Raoux S, Rettner C T,Bogle S N, Darmawikarta K, Bishop S G and Abelson J R 2009 Observation of the role of subcritical nuclei in crystallization of a glassy solid Science 326 980–4
[110] [110] Matsunaga T, Akola J, Kohara S, Honma T, Kobayashi K,Ikenaga E, Jones R O, Yamada N, Takata M and Kojima R 2011 From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials Nat.Mater. 10 129–34
[111] [111] Afonso C N, Solis J, Catalina F and Kalpouzos C 1992 Ultrafast reversible phase change in GeSb films for erasable optical storage Appl. Phys. Lett. 60 3123–5
[112] [112] Zalden P, Bichara C, van Eijk J, Braun C, Bensch W and Wuttig M 2010 Atomic structure of amorphous and crystallized Ge15Sb85 J. Appl. Phys. 107 104312
[113] [113] Ronneberger I, Chen Y H, Zhang W and Mazzarello R 2019 Local structural origin of the crystallization tendency of pure and alloyed Sb Phys. Status Solidi 13 1800552
[114] [114] Zhou W, Farmakidis N, Li X, Tan J, Aggarwal S,Feldmann J, Brückerhoff-Plückelmann F, David Wright C,Pernice W H P and Bhaskaran H 2022 Artificial biphasic synapses based on nonvolatile phase-change photonic memory cells Phys. Status Solidi 16 2100487
[115] [115] Wang X D, Zhou W, Zhang H M, Ahmed S, Huang T K,Mazzarello R, Ma E and Zhang W 2023 Multiscale simulations of growth-dominated Sb2Te phase-change material for non-volatile photonic applications npj Comput. Mater. 9 136
[116] [116] Tao W et al 2022 High optical/color contrast of Sb2Te thin film and its structural origin Mater. Sci. Semicond.Process. 144 106619
[117] [117] Siegrist T, Jost P, Volker H, Woda M, Merkelbach P,Schlockermann C and Wuttig M 2011 Disorder-induced localization in crystalline phase-change materials Nat.Mater. 10 202–8
[118] [118] Luckas J, Krebs D, Grothe S, Klomfa? J, Carius R,Longeaud C and Wuttig M 2013 Defects in amorphous phase-change materials J. Mater. Res. 28 1139–47
[119] [119] Gotoh T 2014 Effect of annealing on carrier concentration in Ge2Sb2Te5 films Can. J. Phys. 92 681–3
[120] [120] Gholipour B, Zhang J F, MacDonald K F, Hewak D W and Zheludev N I 2013 An all-optical, non-volatile,bidirectional, phase-change meta-switch Adv. Mater.25 3050–4
[121] [121] Zhang Y F et al 2019 Broadband transparent optical phase change materials for high-performance nonvolatile photonics Nat. Commun. 10 4279
[122] [122] Zhang H Y, Wang X D and Zhang W 2022 First-principles investigation of amorphous Ge-Sb-Se-Te optical phase-change materials Opt. Mater. Express 12 2497–506
[123] [123] Delaney M, Zeimpekis I, Lawson D, Hewak D W and Muskens O L 2020 A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: sb2S3 and Sb2Se3 Adv. Funct. Mater. 30 2002447
[124] [124] Xu M, Gu R C, Qiao C, Tong H, Cheng X M, Wang C Z,Ho K M, Wang S Y, Miao X S and Xu M 2021 Unraveling the structural and bonding nature of antimony sesquichalcogenide glass for electronic and photonic applications J. Mater. Chem. C 9 8057–65
[125] [125] Ding K Y, Wang J J, Zhou Y X, Tian H, Lu L, Mazzarello R,Jia C L, Zhang W, Rao F and Ma E 2019 Phase-change heterostructure enables ultralow noise and drift for memory operation Science 366 210–5
[126] [126] Shen J B, Lv S L, Chen X, Li T, Zhang S F, Song Z T and Zhu M 2019 Thermal barrier phase change memory ACS Appl. Mater. Interfaces 11 5336–43
[127] [127] Wang X D, Wu Y, Zhou Y X, Deringer V L and Zhang W 2021 Bonding nature and optical contrast of TiTe2/Sb2Te3 phase-change heterostructure Mater. Sci. Semicond.Process. 135 106080
[128] [128] Wang X et al 2022 Unusual phase transitions in two-dimensional telluride heterostructure Mater. Today 54 52–62
[129] [129] Salinga M, Kersting B, Ronneberger I, Jonnalagadda V P,Vu X T, Le Gallo M, Giannopoulos I,Cojocaru-Mirédin O, Mazzarello R and Sebastian A 2018 Monatomic phase change memory Nat. Mater.17 681–5
[130] [130] Zhang W and Ma E 2018 Single-element glass to record data Nat. Mater. 17 654–5
[131] [131] Cheng Z G, Milne T, Salter P, Kim J S, Humphrey S,Booth M and Bhaskaran H 2021 Antimony thin films demonstrate programmable optical nonlinearity Sci. Adv.7 eabd7097
[132] [132] Dragoni D, Behler J and Bernasconi M 2021 Mechanism of amorphous phase stabilization in ultrathin films of monoatomic phase change material Nanoscale 13 16146–55
[133] [133] Shen J B et al 2021 Elemental electrical switch enabling phase segregation-free operation Science 374 1390–4
[134] [134] Wang X D, Zhang W and Ma E 2022 Monatomic phase-change switch Sci. Bull. 67 888–90
[135] [135] Yang Y F et al 2021 A new opportunity for the emerging tellurium semiconductor: making resistive switching devices Nat. Commun. 12 6081
[136] [136] Yang Z et al 2022 Designing conductive-bridge phase-change memory to enable ultralow programming power Adv. Sci. 9 2103478
[137] [137] Wang J-J, Wang X Z, Cheng Y D, Tan J L, Nie C, Yang Z,Xu M, Miao X S, Zhang W and Ma E 2022 Tailoring the oxygen concentration in Ge-Sb-O alloys to enable femtojoule-level phase-change memory operations Mater.Futures 1 045302
[138] [138] Liu Y T, Li X B, Zheng H, Chen N K, Wang X P, Zhang X L,Sun H B and Zhang S B 2021 High-throughput screening for phase-change memory materials Adv. Funct. Mater.31 2009803
[139] [139] Xu Y Z et al 2021 Materials screening for disorder-controlled chalcogenide crystals for phase-change memory applications Adv. Mater. 33 2006221
[140] [140] Deringer V L, Zhang W, Rausch P, Mazzarello R,Dronskowski R and Wuttig M 2015 A chemical link between Ge–Sb–Te and In–Sb–Te phase-change materials J. Mater. Chem. C 3 9519–23
[141] [141] Los J H, Kühne T D, Gabardi S and Bernasconi M 2013 First-principles study of the amorphous In3SbTe2 phase change compound Phys. Rev. B 88 174203
[142] [142] He?ler A et al 2021 In3SbTe2 as a programmable nanophotonics material platform for the infrared Nat.Commun. 12 924
[143] [143] Meng C et al 2023 Broadband hyperbolic thermal metasurfaces based on the plasmonic phase-change material In3SbTe2 Nanoscale 15 6306–12
[144] [144] Wuttig M, Sch?n C F, L?tfering J, Golub P, Gatti C and Raty J Y 2023 Revisiting the nature of chemical bonding in chalcogenides to explain and design their properties Adv. Mater. 35 2208485
[145] [145] Soref R 2010 Mid-infrared photonics in silicon and germanium Nat. Photon. 4 495–7
[146] [146] Penadés J S, Alonso-Ramos C, Khokhar A Z,Nedeljkovic M, Boodhoo L A, Ortega-Mo?nux A,Molina-Fernández I, Cheben P and Mashanovich G Z 2014 Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared Opt. Lett.39 5661–4
[147] [147] Zhou W, Cheng Z Z, Wu X R, Zhu B Q, Sun X K and Tsang H K 2017 Fully suspended slot waveguides for high refractive index sensitivity Opt. Lett.42 1245–8
[148] [148] Zhou W, Cheng Z Z, Wu X R, Sun X K and Tsang H K 2018 Fully suspended slot waveguide platform J. Appl. Phys.123 063103
[149] [149] Penades J S et al 2016 Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding Opt. Express 24 22908–16
[150] [150] Zhou W, Cheng Z Z, Chen X, Xu K, Sun X K and Tsang H 2019 Subwavelength engineering in silicon photonic devices IEEE J. Sel. Top. Quantum Electron. 25 2900113
[151] [151] Rytov S M 1956 Electromagnetic properties of a finely stratified medium Sov. Phys—JETP 2 466–75
[152] [152] Penadés J S et al 2018 Suspended silicon waveguides for long-wave infrared wavelengths Opt. Lett. 43 795–8
[153] [153] Armani D K, Kippenberg T J, Spillane S M and Vahala K J 2003 Ultra-high-Q toroid microcavity on a chip Nature421 925–8
[154] [154] Chan J, Safavi-Naeini A H, Hill J T, Meenehan S and Painter O 2012 Optimized optomechanical crystal cavity with acoustic radiation shield Appl. Phys. Lett. 101 081115
[155] [155] Zhou W, Yu Z J, Ma J W, Zhu B Q, Tsang H K and Sun X K 2016 Ultraviolet optomechanical crystal cavities with ultrasmall modal mass and high optomechanical coupling rate Sci. Rep. 6 37134
[156] [156] Sun X K, Fong K Y, Xiong C, Pernice W H P and Tang H X 2011 GHz optomechanical resonators with high mechanical Q factor in air Opt. Express 19 22316–21
[157] [157] Sun X K, Zhang X F and Tang H X 2012 High-Q silicon optomechanical microdisk resonators at gigahertz frequencies Appl. Phys. Lett. 100 173116
[158] [158] Puckett M W et al 2021 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth Nat. Commun. 12 934
[159] [159] Lee H, Chen T, Li J, Yang K Y, Jeon S, Painter O and Vahala K J 2012 Chemically etched ultrahigh-Q wedge-resonator on a silicon chip Nat. Photon. 6 369–73
[160] [160] Shankar R, Bulu I, Leijssen R and Loncˇar M 2011 Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities Opt. Express 19 24828–37
[161] [161] Borselli M, Johnson T J and Painter O 2006 Measuring the role of surface chemistry in silicon microphotonics Appl.Phys. Lett. 88 131114
[162] [162] Froitzheim H, Lammering H and Günter H L 1983 Energy-loss-spectroscopy studies on the adsorption of hydrogen on cleaved Si(111)-(2×1) surfaces Phys. Rev. B 27 2278–84
[163] [163] Takahashi Y, Inui Y, Chihara M, Asano T, Terawaki R and Noda S 2013 A micrometre-scale Raman silicon laser with a microwatt threshold Nature 498 470–4
[164] [164] Zhou W, Cheng Z Z, Zhu B Q, Sun X K and Tsang H K 2016 Hyperuniform disordered network polarizers IEEE J. Sel. Top. Quantum Electron. 22 4901307
[165] [165] Zhou W, Tong Y Y, Sun X K and Tsang H K 2019 Hyperuniform disordered photonic bandgap polarizers J.Appl. Phys. 126 113106
[166] [166] Zhou W, Tong Y Y, Sun X K and Tsang H K 2020 Ultra-broadband hyperuniform disordered silicon photonic polarizers IEEE J. Sel. Top. Quantum Electron.26 8201109
[167] [167] Zhou W, Cheng Z Z, Sun X K and Tsang H K 2018 Tailorable dual-wavelength-band coupling in a transverse-electric-mode focusing subwavelength grating coupler Opt. Lett. 43 2985–8
[168] [168] Zhou W and Tsang H K 2019 Dual-wavelength-band subwavelength grating coupler operating in the near infrared and extended shortwave infrared Opt. Lett.44 3621–4
[169] [169] Wolff C, Soref R, Poulton C G and Eggleton B J 2014 Germanium as a material for stimulated Brillouin scattering in the mid-infrared Opt. Express 22 30735–47
[170] [170] Gupta S, Gong X, Zhang R, Yeo Y C, Takagi S and Saraswat K C 2014 New materials for post-Si computing:Ge and GeSn devices MRS Bull. 39 678–86
[171] [171] Kang J, Yu X, Takenaka M and Takagi S 2016 Impact of thermal annealing on Ge-on-Insulator substrate fabricated by wafer bonding Mater. Sci. Semicond. Process.42 259–63
[172] [172] Zhang R, Iwasaki T, Taoka N, Takenaka M and Takagi S 2011 Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation Appl. Phys. Lett. 98 112902
[173] [173] Wang X W, Chen R and Sun S H 2023 Material manufacturing from atomic layer Int. J. Extreme Manuf.5 043001
[174] [174] Li J X, Chai G D and Wang X W 2023 Atomic layer deposition of thin films: from a chemistry perspective Int.J. Extreme Manuf. 5 032003
[175] [175] Kang J, Takenaka M and Takagi S 2016 Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits Opt. Express 24 11855–64
[176] [176] Kang J, Cheng Z Z, Zhou W, Xiao T H, Gopalakrisna K L,Takenaka M, Tsang H K and Goda K 2017 Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides Opt. Lett. 42 2094–7
[177] [177] Xiao T H, Zhao Z Q, Zhou W, Takenaka M, Tsang H K,Cheng Z Z and Goda K 2018 High-Q germanium optical nanocavity Photon. Res. 6 925–8
[178] [178] Kang J, Takagi S and Takenaka M 2018 Ge photodetector monolithically integrated with amorphous Si waveguide on wafer-bonded Ge-on-insulator substrate Opt. Express26 30546–55
[179] [179] Xiao T H, Zhao Z Q, Zhou W, Takenaka M, Tsang H K,Cheng Z Z and Goda K 2017 Mid-infrared germanium photonic crystal cavity Opt. Lett. 42 2882–5
[180] [180] Xiao T H, Zhao Z Q, Zhou W, Chang C Y, Set S Y,Takenaka M, Tsang H K, Cheng Z Z and Goda K 2018 Mid-infrared high-Q germanium microring resonator Opt.Lett. 43 2885–8
[181] [181] Osman A, Nedeljkovic M, Penades J S, Wu Y, Qu Z,Khokhar A Z, Debnath K and Mashanovich G Z 2018 Suspended low-loss germanium waveguides for the longwave infrared Opt. Lett. 43 5997–6000
[182] [182] Sánchez-Postigo A et al 2021 Suspended germanium waveguides with subwavelength-grating metamaterial cladding for the mid-infrared band Opt. Express29 16867–78
[183] [183] Wu C M, Yu H S, Li H, Zhang X H, Takeuchi I and Li M 2019 Low-loss integrated photonic switch using subwavelength patterned phase change material ACS Photonics 6 87–92
[184] [184] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P,Capasso F and Gaburro Z 2011 Light propagation with phase discontinuities: generalized laws of reflection and refraction Science 334 333–7
[185] [185] Li L Z et al 2017 Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces Nat.Nanotechnol. 12 675–83
[186] [186] Wu C M, Yang X X, Yu H S, Peng R M, Takeuchi I,Chen Y R and Li M 2022 Harnessing optoelectronic noises in a photonic generative network Sci. Adv.8 eabm2956
[187] [187] Li W F, Cao X Y, Song S N, Wu L S, Wang R B, Jin Y,Song Z T and Wu A M S 2022 Ultracompact high-extinction-ratio nonvolatile on-chip switches based on structured phase change materials Laser Photon. Rev.16 2100717
[188] [188] Cai L Y, Lu Y G and Zhu H H 2023 Performance enhancement of on-chip optical switch and memory using Ge2Sb2Te5 slot-assisted microring resonator Opt. Lasers Eng. 162 107436
[189] [189] Zhu H H, Lu Y G and Cai L Y 2023 Wavelength-shift-free racetrack resonator hybrided with phase change material for photonic in-memory computing Opt. Express31 18840–50
[190] [190] Xiong F, Liao A D, Estrada D and Pop E 2011 Low-power switching of phase-change materials with carbon nanotube electrodes Science 332 568–70
[191] [191] Xiong F, Bae M H, Dai Y, Liao A D, Behnam A,Carrion E A, Hong S, Ielmini D and Pop E 2013 Self-aligned nanotube–nanowire phase change memory Nano Lett. 13 464–9
[192] [192] Wagner R S and Ellis W C 1964 Vapor-liquid-solid mechanism of single crystal growth Appl. Phys. Lett.4 89–90
[193] [193] Law M, Goldberger J and Yang P D 2004 Semiconductor nanowires and nanotubes Annu. Rev. Mater. Res.34 83–122
[194] [194] Schmidt V, Wittemann J V and G?sele U 2010 Growth,thermodynamics, and electrical properties of silicon nanowires Chem. Rev. 110 361–88
[195] [195] Jia C C, Lin Z Y, Huang Y and Duan X F 2019 Nanowire electronics: from nanoscale to macroscale Chem. Rev.119 9074–135
[196] [196] Fan Z Y, Ho J C, Jacobson Z A, Yerushalmi R, Alley R L,Razavi H and Javey A 2008 Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing Nano Lett. 8 20–25
[197] [197] Yao J, Yan H and Lieber C M 2013 A nanoscale combing technique for the large-scale assembly of highly aligned nanowires Nat. Nanotechnol. 8 329–35
[198] [198] Moreno-Moreno M, Ares P, Moreno C, Zamora F,Gómez-Navarro C and Gómez-Herrero J 2019 AFM manipulation of gold nanowires to build electrical circuits Nano Lett. 19 5459–68
[199] [199] Duan X F, Huang Y, Cui Y, Wang J F and Lieber C M 2001 Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices Nature409 66–69
[200] [200] Hussain S A, Dey B, Bhattacharjee D and Mehta N 2018 Unique supramolecular assembly through Langmuir–Blodgett (LB) technique Heliyon 4 e01038
[201] [201] Ali U E, Yang H, Khayrudinov V, Modi G, Cheng Z G,Agarwal R, Lipsanen H and Bhaskaran H 2022 A universal pick-and-place assembly for nanowires Small 18 2201968
[202] [202] Kendall K 1994 Adhesion: molecules and mechanics Science 263 1720–5
[203] [203] Zadeh I E, Elshaari A W, J¨ons K D, Fognini A, Dalacu D,Poole P J, Reimer M E and Zwiller V 2016 Deterministic integration of single photon sources in silicon based photonic circuits Nano Lett. 16 2289–94
[204] [204] Ali U E, Modi G, Agarwal R and Bhaskaran H 2022 Real-time nanomechanical property modulation as a framework for tunable NEMS Nat. Commun. 13 1464
[205] [205] Lu Y G, Stegmaier M, Nukala P, Giambra M A, Ferrari S,Busacca A, Pernice W H P and Agarwal R 2017 Mixed-mode operation of hybrid phase-change nanophotonic circuits Nano Lett. 17 150–5
[206] [206] Li W B, Qian X F and Li J 2021 Phase transitions in 2D materials Nat. Rev. Mater. 6 829–46
[207] [207] Feng W, Gao F, Hu Y X, Dai M J, Liu H, Wang L F and Hu P G 2018 Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets ACS Appl. Mater. Interfaces10 27584–8
[208] [208] Huang Y T, Chen N K, Li Z Z, Wang X P, Sun H B,Zhang S B and Li X B 2022 Two-dimensional In2Se3: a rising advanced material for ferroelectric data storage InfoMat 4 e12341
[209] [209] Wang Y et al 2017 Structural phase transition in monolayer MoTe2 driven by electrostatic doping Nature 550 487–91
[210] [210] Li T T et al 2022 Structural phase transitions between layered indium selenide for integrated photonic memory Adv. Mater. 34 2108261
[211] [211] Liu W, Kang J H, Sarkar D, Khatami Y, Jena D and Banerjee K 2013 Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors Nano Lett. 13 1983–90
[212] [212] Choi M S, Cheong B K, Ra C H, Lee S, Bae J H, Lee S,Lee G D, Yang C W, Hone J and Yoo W J 2017 Electrically driven reversible phase changes in layered In2Se3 crystalline film Adv. Mater. 29 1703568
[213] [213] Lee H, Kang D H and Tran L 2005 Indium selenide (In2Se3)thin film for phase-change memory Mater. Sci. Eng.119 196–201
[214] [214] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G,Zhang Q, Chen X D and Zhang H 2012 Single-layer MoS2 phototransistors ACS Nano 6 74–80
[215] [215] Chen R, Fang Z R, Fr¨och J E, Xu P P, Zheng J J and Majumdar A 2022 Broadband nonvolatile electrically controlled programmable units in silicon photonics ACS Photonics 9 2142–50
[216] [216] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A,Chandrasekhar S, Winzer P and Loncˇar M 2018 Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages Nature 562 101–4
[217] [217] Zhou W, Li X, Youngblood N, Pernice W H P, Wright C D and Bhaskaran H 2022. Electrical switching of Ge2Sb2Te5 memory cells based on silicon photonic waveguide microheaters Conf. on Lasers and Electro-Optics (IEEE) pp 1–2 (available at: https://ieeexplore.ieee.org/document/9891064)
[218] [218] Atabaki A H et al 2018 Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip Nature 556 349–54
[219] [219] Bao Q L and Loh K P 2012 Graphene photonics, plasmonics,and broadband optoelectronic devices ACS Nano 6 3677–94
[220] [220] Yu L H, Dai D X and He S L 2014 Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices Appl. Phys. Lett.105 251104
[221] [221] Zhou K et al 2023 Manufacturing of graphene based synaptic devices for optoelectronic applications Int. J. Extreme Manuf. 5 042006
[222] [222] Yan S Q, Zhu X L, Frandsen L H, Xiao S S, Mortensen N A,Dong J J and Ding Y H 2017 Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides Nat. Commun. 8 14411
[223] [223] Zhao J et al 2023 Graphene microheater chips for in situ TEM Nano Lett. 23 726–34
[224] [224] Zheng J J, Zhu S F, Xu P P, Dunham S and Majumdar A 2020 Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters ACS Appl. Mater. Interfaces 12 21827–36
[225] [225] Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L,Wang F and Zhang X 2011 A graphene-based broadband optical modulator Nature 474 64–67
[226] [226] Fang Z R et al 2022 Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters Nat. Nanotechnol.17 842–8
[227] [227] Liang X L et al 2011 Toward clean and crackless transfer of graphene ACS Nano 5 9144–53
[228] [228] Li X S et al 2010 Graphene films with large domain size by a two-step chemical vapor deposition process Nano Lett.10 4328–34
[229] [229] Hong J Y, Shin Y C, Zubair A, Mao Y W, Palacios T,Dresselhaus M S, Kim S H and Kong J 2016 A rational strategy for graphene transfer on substrates with rough features Adv. Mater. 28 2382–92
[230] [230] Chandrashekar B N, Deng B, Smitha A S, Chen Y B,Tan C W, Zhang H X, Peng H L and Liu Z F 2015 Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator Adv. Mater. 27 5210–6
[231] [231] Zhuo S B, Li Y, Zhao A N, Li Y R, Yao S Y, Zhang M J,Feng T H and Li Z H 2023 Dynamic transmissive metasurface for broadband phase-only modulation based on phase-change materials Laser Photon. Rev. 17 2200403
[232] [232] Ríos C et al 2021 Multi-level electro-thermal switching of optical phase-change materials using graphene Adv.Photon. Res. 2 2000034
[233] [233] GenISys 2023 Electron- and laser-beam lithography software(available at: www.genisys-gmbh.com/beamer.html)
[234] [234] Fang Z R, Zheng J J, Saxena A, Whitehead J, Chen Y Y and Majumdar A 2021 Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material Adv. Opt. Mater. 9 2002049
[235] [235] Melikyan A et al 2014 High-speed plasmonic phase modulators Nat. Photon. 8 229–33
[236] [236] Alloatti L et al 2011 42.7 Gbit/s electro-optic modulator in silicon technology Opt. Express 19 11841–51
[237] [237] Ayata M et al 2017 High-speed plasmonic modulator in a single metal layer Science 358 630–2
[238] [238] Thomaschewski M, Zenin V A, Fiedler S, Wolff C and Bozhevolnyi S I 2022 Plasmonic lithium niobate Mach–Zehnder modulators Nano Lett. 22 6471–5
[239] [239] Heni W et al 2019 Plasmonic IQ modulators with attojoule per bit electrical energy consumption Nat. Commun.10 1694
[240] [240] Elder D L et al 2017 Effect of rigid bridge-protection units,quadrupolar interactions, and blending in organic electro-optic chromophores Chem. Mater. 29 6457–71
[241] [241] Nagpal P, Lindquist N C, Oh S H and Norris D J 2009 Ultrasmooth patterned metals for plasmonics and metamaterials Science 325 594–7
[242] [242] Tan Q L, Huang X G, Zhou W and Yang K 2013 A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides Sci. Rep.3 2206
[243] [243] Zhu B Q, Chen M Y, Zhu Q, Zhou G D, Abdelazim N M,Zhou W, Kershaw S V, Rogach A L, Zhao N and Tsang H K 2019 Integrated plasmonic infrared photodetector based on colloidal HgTe quantum dots Adv. Mater. Technol. 4 1900354
[244] [244] Lu L J et al 2012 Plasmonic nanolaser using epitaxially grown silver film Science 337 450–3
[245] [245] Wu D, Yang X, Wang N N, Lu L J, Chen J P, Zhou L J and Rahman B M A 2022 Resonant multilevel optical switching with phase change material GST Nanophotonics11 3437–46
[246] [246] Shen Y C et al 2017 Deep learning with coherent nanophotonic circuits Nat. Photon. 11 441–6
[247] [247] Ghazi Sarwat S, Brückerhoff-Plückelmann F, Carrillo S G C,Gemo E, Feldmann J, Bhaskaran H, Wright C D,Pernice W H P and Sebastian A 2022 An integrated photonics engine for unsupervised correlation detection Sci. Adv. 8 eabn3243
[248] [248] Li X, Youngblood N, Zhou W, Feldmann J, Swett J,Aggarwal S, Sebastian A, Wright C D, Pernice W and Bhaskaran H 2020. On-chip phase change optical matrix multiplication core IEEE Int. Electron Devices Meeting(IEEE) pp 7.5.1–4
[249] [249] Brückerhoff-Plückelmann F, Feldmann J, Gehring H,Zhou W, Wright C D, Bhaskaran H and Pernice W 2022 Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers Nanophotonics11 4063–72
[250] [250] Youngblood N 2023 Coherent photonic crossbar arrays for large-scale matrix-matrix multiplication IEEE J. Sel. Top.Quantum Electron. 29 6100211
[251] [251] Tong Y Y, Zhou W, Wu X R and Tsang H K 2020 Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler IEEE J.Quantum Electron. 56 8400107
[252] [252] Wu X R, Huang C R, Xu K, Zhou W, Shu C and Tsang H K 2018 3×104 Gb/s single-λ interconnect of mode-division multiplexed network with a multicore fiber J. Lightwave Technol. 36 318–24
[253] [253] Lee J S, Farmakidis N, Wright C D and Bhaskaran H 2022 Polarization-selective reconfigurability in hybridized-active-dielectric nanowires Sci. Adv.8 eabn9459
[254] [254] Ambrogio S et al 2018 Equivalent-accuracy accelerated neural-network training using analogue memory Nature558 60–67
[255] [255] Li C et al 2018 Analogue signal and image processing with large memristor crossbars Nat. Electron. 1 52–59
[256] [256] Chen R, Fang Z R, Miller F, Rarick H, Fr?ch J E and Majumdar A 2022 Opportunities and challenges for large-scale phase-change material integrated electro-photonics ACS Photonics 9 3181–95
[257] [257] Delaney M, Zeimpekis I, Du H, Yan X Z, Banakar M,Thomson D J, Hewak D W and Muskens O L 2021 Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material Sci. Adv.7 eabg3500
[258] [258] Wang D N, Zhao L, Yu S Y, Shen X Y, Wang J J, Hu C Q,Zhou W and Zhang W 2023 Non-volatile tunable optics by design: from chalcogenide phase-change materials to device structures Mater. Today 68 334–55
[259] [259] Zhou F C et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat.Nanotechnol. 14 776–82
[260] [260] Zhou F C and Chai Y 2020 Near-sensor and in-sensor computing Nat. Electron. 3 664–71
[261] [261] Chen J W, Zhou Z, Kim B J, Zhou Y, Wang Z Q, Wan T Q,Yan J M, Kang J F, Ahn J H and Chai Y 2023 Optoelectronic graded neurons for bioinspired in-sensor motion perception Nat. Nanotechnol. 18 882–8
Get Citation
Copy Citation Text
Wen Zhou, Xueyang Shen, Xiaolong Yang, Jiangjing Wang, Wei Zhang. Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing[J]. International Journal of Extreme Manufacturing, 2024, 6(2): 22001
Received: Jun. 30, 2023
Accepted: --
Published Online: Sep. 6, 2024
The Author Email: Zhou Wen (wen.zhou@xjtu.edu.cn)