Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 3055(2024)
Preparation and Supercapacitive Properties of Fe-based Prussian Blue@Nanoporous Carbon Composites
[1] [1] DENG X L, ZOU K Y, CAI P, et al. Advanced battery-type anode materials for high-performance sodium-ion capacitors[J]. Small Meth, 2020, 4(10): 2000401.
[2] [2] BUENO P R. Nanoscale origins of super-capacitance phenomena[J]. J Power Sources, 2019, 414: 420–434.
[3] [3] LEE K S, SEO Y J, JEONG H T. Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor[J]. Carbon Lett, 2021, 31(5): 1041–1049.
[4] [4] CHEN R W, LI X S, HUANG Q B, et al. Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes[J]. Chem Eng J, 2021, 412: 128755.
[5] [5] ARKHIPOVA E A, VIKTOROVA A S, IVANOV A S, et al. Nitrogen- and oxygen-doped multi-walled carbon nanotubes for supercapacitor with ionic liquid-based electrolyte[J]. Funct Mater Lett, 2020, 13(4): 2040002.
[6] [6] WORSLEY E A, MARGADONNA S, BERTONCELLO P. Application of graphene nanoplatelets in supercapacitor devices: A review of recent developments[J]. Nanomaterials (Basel), 2022, 12(20): 3600.
[7] [7] ZHANG X H, HAN R Y, LIU Y Z, et al. Porous and graphitic structure optimization of biomass-based carbon materials from 0D to 3D for supercapacitors: A review[J]. Chem Eng J, 2023, 460: 141607.
[8] [8] ETMAN A E S, IBRAHIM A M, DARWISH F A Z M, et al. A 10years-developmental study on conducting polymers composites for supercapacitors electrodes: A review for extensive data interpretation[J]. J Ind Eng Chem, 2023, 122: 27–45.
[9] [9] DAI M Z, ZHAO D P, WU X. Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors[J].Chin Chemical Lett, 2020, 31(9): 2177–2188.
[10] [10] DěDEK I, KUPKA V, JAKUBEC P, et al. Metal-organic framework/conductive polymer hybrid materials for supercapacitors[J]. Appl Mater Today, 2022, 26: 101387.
[11] [11] XIE B X, SUN B Y, GAO T Y, et al. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries[J]. Coord Chem Rev, 2022, 460: 214478.
[13] [13] LEE S Y, PARK J Y, KIM H J, et al. Prussian blue-graphene oxide composite cathode for a sodium-ion capacitor with improved cyclic stability and energy density[J]. J Alloys Compd, 2022, 898: 162952.
[14] [14] WU S, FENG Q L, ZHOU S, et al. Core-shell shaped Ni2CoHCF@PPy microspheres from Prussian blue analogues for high performance asymmetric supercapacitors[J]. Nanotechnology, 2021, 32(44): 445402.
[15] [15] ZHAO J, JIANG Y F, FAN H, et al. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship[J]. Adv Mater, 2017, 29(11): 1604569.
[16] [16] ZHAO C X, YU Z G, CHEN Q S, et al. Molten salt-assisted fabrication of hierarchical porous carbon derived from lignite for Zn-ion hybrid supercapacitors[J]. Mater Lett, 2024, 362: 136180.
[17] [17] SHI W H, LIU X Y, DENG T Q, et al. Enabling superior sodium capture for efficient water desalination by a tubular polyaniline decorated with Prussian blue nanocrystals[J]. Adv Mater, 2020, 32(33): e1907404.
[18] [18] MA?EIKIEN? R, NIAURA G, MALINAUSKAS A. Electrocatalytic reduction of hydrogen peroxide at Prussian blue modified electrode: An in situ Raman spectroelectrochemical study[J]. J Electroanal Chem, 2011, 660(1): 140–146.
[19] [19] GONG A, ZHAO Y B, LIANG B L, et al. Stepwise hollow Prussian blue/carbon nanotubes composite as a novel electrode material for high-performance desalination[J]. J Colloid Interface Sci, 2022, 605: 432–440.
[20] [20] WU X Y, SHAO M M, WU C H, et al. Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries[J]. ACS Appl Mater Interfaces, 2016, 8(36): 23706–23712.
[21] [21] ZHANG X J, TAO L, HE P, et al. A novel cobalt hexacyanoferrate/ multi-walled carbon nanotubes nanocomposite: Spontaneous assembly synthesis and application as electrode materials with significantly improved capacitance for supercapacitors[J]. Electrochim Acta, 2018, 259: 793–802.
[22] [22] GONG A, ZHAO Y B, HE M M, et al. High-performance desalination of three-dimensional nitrogen-doped carbon framework reinforced Prussian blue in capacitive deionization[J]. Desalination, 2021, 505: 114997.
[23] [23] ZHANG D P, ZHANG J S, YANG Z X, et al. Nickel hexacyanoferrate/carbon composite as a high-rate and long-life cathode material for aqueous hybrid energy storage[J]. Chem Commun, 2017, 53(76): 10556–10559.
[24] [24] LUO J H, SUN S X, PENG J, et al. Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2017, 9(30): 25317–25322.
[25] [25] SHAO H, WU Y C, LIN Z F, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chem Soc Rev, 2020, 49(10): 3005–3039.
[26] [26] NASKAR P, DEBNATH S, MAITI A, et al. Low-cost and scalable Ni-prussian blue analogue// functionalized carbon based Na-ion systems for all climate operations[J]. Chemphyschem, 2023, 24(4): e202200588.
Get Citation
Copy Citation Text
CHEN Qiushuang, ZHAO Chunxia, CHEN Yekai, CHEN Wen. Preparation and Supercapacitive Properties of Fe-based Prussian Blue@Nanoporous Carbon Composites[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 3055
Category:
Received: Oct. 27, 2023
Accepted: --
Published Online: Nov. 8, 2024
The Author Email: Chunxia ZHAO (zhaochunxia@whut.edu.cn)