Laser & Optoelectronics Progress, Volume. 61, Issue 3, 0323002(2024)

Polarity-Controllable Laser-Processed Graphene Oxide-Based Memristor (Invited)

Suling Liu1,2, Zhengfen Wan1, Yutian Wang1,2, Min Gu1、*, and Qiming Zhang1、**
Author Affiliations
  • 1Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    References(30)

    [1] Schaller R R. Moore’s law: past, present and future[J]. IEEE Spectrum, 34, 52-59(1997).

    [2] Moore S K. Another step toward the end of Moore’s law: Samsung and TSMC move to 5-nanometer manufacturing[J]. IEEE Spectrum, 56, 9-10(2019).

    [3] Fang Y X, He Y F. Resolution technology of lithography machine[J]. Journal of Physics: Conference Series, 2221, 012041(2022).

    [4] Wang Y T, Pan Y H, Yan M et al. A survey on ChatGPT: AI-generated contents, challenges, and solutions[J]. IEEE Open Journal of the Computer Society, 4, 280-302(2023).

    [5] von Neumann J. First draft of a report on the EDVAC[J]. IEEE Annals of the History of Computing, 15, 27-75(2002).

    [6] Kuzum D, Yu S M, Wong H S. Synaptic electronics: materials, devices and applications[J]. Nanotechnology, 24, 382001(2013).

    [7] Markram H, Gerstner W, Sjöström P J. A history of spike-timing-dependent plasticity[J]. Frontiers in Synaptic Neuroscience, 3, 4(2011).

    [8] Chua L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 18, 507-519(1971).

    [9] Strukov D B, Snider G S, Stewart D R et al. The missing memristor found[J]. Nature, 453, 80-83(2008).

    [10] Liu B, Liu Z W, Chiu I S et al. Programmable synaptic metaplasticity and below femtojoule spiking energy realized in graphene-based neuromorphic memristor[J]. ACS Applied Materials & Interfaces, 10, 20237-20243(2018).

    [11] Hadiyal K, Ganesan R, Rastogi A et al. Bio-inspired artificial synapse for neuromorphic computing based on NiO nanoparticle thin film[J]. Scientific Reports, 13, 7481(2023).

    [12] Sharbati M T, Du Y H, Torres J et al. Low-power, electrochemically tunable graphene synapses for neuromorphic computing[J]. Advanced Materials, 30, 1802353(2018).

    [13] Fu T D, Liu X M, Gao H Y et al. Bioinspired bio-voltage memristors[J]. Nature Communications, 11, 1861(2020).

    [14] Yan X B, Zhao Q L, Chen A P et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing[J]. Small, 15, 1901423(2019).

    [15] Kim M K, Lee J S. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics[J]. ACS Nano, 12, 1680-1687(2018).

    [16] Li R Z, Dong Y B, Qian F S et al. CsPbBr3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning[J]. PhotoniX, 4, 4(2023).

    [17] Chen F D, Zhang S, Hu L et al. Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition[J]. Advanced Functional Materials, 33, 2300266(2023).

    [18] He C L, Zhuge F, Zhou X F et al. Nonvolatile resistive switching in graphene oxide thin films[J]. Applied Physics Letters, 95, 232101(2009).

    [19] Chen M, Wan Z F, Dong H et al. Direct laser writing of graphene oxide for ultra-low power consumption memristors in reservoir computing for digital recognition[J]. National Science Open, 1, 20220020(2022).

    [20] Hui F, Grustan-Gutierrez E, Long S B et al. Graphene and related materials for resistive random access memories[J]. Advanced Electronic Materials, 3, 1600195(2017).

    [21] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [22] Wan Z F, Streed E W, Lobino M et al. Laser-reduced graphene: synthesis, properties, and applications[J]. Advanced Materials Technologies, 3, 1700315(2018).

    [23] Kang S, Evans C C, Shukla S et al. Patterning and reduction of graphene oxide using femtosecond-laser irradiation[J]. Optics & Laser Technology, 103, 340-345(2018).

    [24] Wan Z F, Nguyen N T, Gao Y S et al. Laser induced graphene for biosensors[J]. Sustainable Materials and Technologies, 25, e00205(2020).

    [25] Wan Z F, Chen X, Gu M. Laser scribed graphene for supercapacitors[J]. Opto-Electronic Advances, 4, 200079(2021).

    [26] Wan Z F, Umer M, Lobino M et al. Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection[J]. Carbon, 163, 385-394(2020).

    [27] Wan Z F, Wang S J, Haylock B et al. Localized surface plasmon enhanced laser reduction of graphene oxide for wearable strain sensor[J]. Advanced Materials Technologies, 6, 2001191(2021).

    [28] Wan Z F, Zhang K E, He Y et al. Graphene lithography based on laser reduction and plasma oxidization for rewritable hologram imaging[J]. Advanced Optical Materials, 11, 2300872(2023).

    [29] Deng N Q, Tian H, Ju Z Y et al. Tunable graphene oxide reduction and graphene patterning at room temperature on arbitrary substrates[J]. Carbon, 109, 173-181(2016).

    [30] Sokolov D A, Shepperd K R, Orlando T M. Formation of graphene features from direct laser-induced reduction of graphite oxide[J]. The Journal of Physical Chemistry Letters, 1, 2633-2636(2010).

    Tools

    Get Citation

    Copy Citation Text

    Suling Liu, Zhengfen Wan, Yutian Wang, Min Gu, Qiming Zhang. Polarity-Controllable Laser-Processed Graphene Oxide-Based Memristor (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0323002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Nov. 10, 2023

    Accepted: Dec. 3, 2023

    Published Online: Feb. 22, 2024

    The Author Email: Gu Min (gumin@usst.edu.cn), Zhang Qiming (qimingzhang@usst.edu.cn)

    DOI:10.3788/LOP232711

    Topics