Infrared and Laser Engineering, Volume. 53, Issue 8, 20240206(2024)

Semi-supervised 3D object detection based on frustum transformation and RGB voxel grid

Yan WANG1, Tiantian YUAN1, Bin HU1,2、*, and Yao LI2
Author Affiliations
  • 1Technical College for the Deaf , Tianjin University of Technology, Tianjin 300384, China
  • 2School of Microelectronics, Tianjin University, Tianjin 300072, China
  • show less
    References(20)

    [2] [2] ZHOU Y, TUZEL O. Voxel: Endtoend learning f point cloud based 3d object detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 44904499.

    [3] [3] CHEN X, MA H, WAN J, et al. Multiview 3D object detection wk f autonomous driving [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2017: 19071915.

    [4] [4] QI C R, LIU W, WU C, et al. Frustum points f 3d object detection from RGBD data [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 918927.

    [5] [5] WANG H, CONG Y, LITANY O, et al. 3DIoUMatch: Leveraging iou prediction f semisupervised 3d object detection [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition. 2021: 1461514624.

    [6] [6] SHI S, GUO C, JIANG L, et al. PVRCNN: Pointvoxel feature set abstraction f 3D object detection [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2020: 1052910538.

    [9] [9] LIU Tianci, SHI Zelin, LIU Yunpeng, et al. Geometry deep wk imageset recognition method based on Grassmann manifolds [J]. Infrared Laser Engineering , 2018, 47(7): 0703002. (in Chinese)

    [10] T LIANG, H XIE, K YU et al. BEVFusion: A simple and robust lidar-camera fusion framework. Advances in Neural Information Processing Systems, 35, 10421-10434(2022).

    [11] [11] CHEN Q, MA X, TANG S, et al. FCooper: Feature based cooperative perception f autonomous vehicle edge computing system using 3D point clouds [C]Proceedings of the 4th ACMIEEE Symposium on Edge Computing, 2019: 88100.

    [12] A V D OORD, Y LI, O VINYALS. Representation learning with contrastive predictive coding.

    [14] [14] LANG A H, VA S, CAESAR H, et al. PointPillars: Fast encoders f object detection from point clouds [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2019: 1269712705.

    [16] [16] LIANG M, YANG B, WANG S, et al. Deep continuous fusion f multisens 3D object detection [C]Proceedings of the European Conference on Computer Vision (ECCV), 2018: 641656.

    [17] [17] KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation object detection from view aggregation [C]2018 IEEERSJ International Conference on Intelligent Robots Systems (IROS), IEEE, 2018: 18.

    [18] [18] SINDAGI V A, ZHOU Y, TUZEL O. MVX: Multimodal voxel f 3D object detection [C]2019 International Conference on Robotics Automation (ICRA), IEEE, 2019: 72767282.

    [19] [19] VA S, LANG A H, HELOU B, et al. PointPainting: Sequential fusion f 3D object detection [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2020: 46044612.

    [20] [20] HUANG T, LIU Z, CHEN X, et al. EP: Enhancing point features with image semantics f 3D object detection [C]Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16, Springer International Publishing, 2020: 3552.

    Tools

    Get Citation

    Copy Citation Text

    Yan WANG, Tiantian YUAN, Bin HU, Yao LI. Semi-supervised 3D object detection based on frustum transformation and RGB voxel grid[J]. Infrared and Laser Engineering, 2024, 53(8): 20240206

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 16, 2024

    Accepted: --

    Published Online: Oct. 29, 2024

    The Author Email:

    DOI:10.3788/IRLA20240206

    Topics