Infrared and Laser Engineering, Volume. 53, Issue 8, 20240206(2024)
Semi-supervised 3D object detection based on frustum transformation and RGB voxel grid
[2] [2] ZHOU Y, TUZEL O. Voxel: Endtoend learning f point cloud based 3d object detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 44904499.
[3] [3] CHEN X, MA H, WAN J, et al. Multiview 3D object detection wk f autonomous driving [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2017: 19071915.
[4] [4] QI C R, LIU W, WU C, et al. Frustum points f 3d object detection from RGBD data [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 918927.
[5] [5] WANG H, CONG Y, LITANY O, et al. 3DIoUMatch: Leveraging iou prediction f semisupervised 3d object detection [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition. 2021: 1461514624.
[6] [6] SHI S, GUO C, JIANG L, et al. PVRCNN: Pointvoxel feature set abstraction f 3D object detection [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2020: 1052910538.
[9] [9] LIU Tianci, SHI Zelin, LIU Yunpeng, et al. Geometry deep wk imageset recognition method based on Grassmann manifolds [J]. Infrared Laser Engineering , 2018, 47(7): 0703002. (in Chinese)
[10] T LIANG, H XIE, K YU et al. BEVFusion: A simple and robust lidar-camera fusion framework. Advances in Neural Information Processing Systems, 35, 10421-10434(2022).
[11] [11] CHEN Q, MA X, TANG S, et al. FCooper: Feature based cooperative perception f autonomous vehicle edge computing system using 3D point clouds [C]Proceedings of the 4th ACMIEEE Symposium on Edge Computing, 2019: 88100.
[12] A V D OORD, Y LI, O VINYALS. Representation learning with contrastive predictive coding.
[14] [14] LANG A H, VA S, CAESAR H, et al. PointPillars: Fast encoders f object detection from point clouds [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2019: 1269712705.
[15] Y YAN, Y MAO, B LI. SECOND: Sparsely embedded convolutional detection. Sensors, 18, 3337(2018).
[16] [16] LIANG M, YANG B, WANG S, et al. Deep continuous fusion f multisens 3D object detection [C]Proceedings of the European Conference on Computer Vision (ECCV), 2018: 641656.
[17] [17] KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation object detection from view aggregation [C]2018 IEEERSJ International Conference on Intelligent Robots Systems (IROS), IEEE, 2018: 18.
[18] [18] SINDAGI V A, ZHOU Y, TUZEL O. MVX: Multimodal voxel f 3D object detection [C]2019 International Conference on Robotics Automation (ICRA), IEEE, 2019: 72767282.
[19] [19] VA S, LANG A H, HELOU B, et al. PointPainting: Sequential fusion f 3D object detection [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2020: 46044612.
[20] [20] HUANG T, LIU Z, CHEN X, et al. EP: Enhancing point features with image semantics f 3D object detection [C]Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16, Springer International Publishing, 2020: 3552.
Get Citation
Copy Citation Text
Yan WANG, Tiantian YUAN, Bin HU, Yao LI. Semi-supervised 3D object detection based on frustum transformation and RGB voxel grid[J]. Infrared and Laser Engineering, 2024, 53(8): 20240206
Category:
Received: May. 16, 2024
Accepted: --
Published Online: Oct. 29, 2024
The Author Email: