Laser & Optoelectronics Progress, Volume. 61, Issue 3, 0323001(2024)

Metasurfaces for Manipulating and Controlling Visible-Light Emission and Its Diverse Applications (Invited)

Shaojun Wang1,2、†,*, Zhenghe Zhang1,2,3、†, Ziyue Hou1,2, Yiheng Zhai1,2, Chaojie Xu4、**, and Xiaofeng Li1,2、***
Author Affiliations
  • 1School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, Jiangsu , China
  • 2Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou 215006, Jiangsu , China
  • 3Physics Department, Harbin Institute of Technology, Harbin 150001, Heilongjiang , China
  • 4Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu , China
  • show less
    References(118)

    [1] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [2] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [3] Sun S L, He Q, Hao J M et al. High-efficiency manipulations on electromagnetic waves with metasurfaces[J]. Acta Optica Sinica, 41, 0123003(2021).

    [4] Zhang F, Cai J X, Pu M B et al. Composite-phase manipulation in optical metasurfaces[J]. Physics, 50, 300-307(2021).

    [5] Zhu X S, Liu J, He J Z et al. Research and application of metasurfaces in quantum optics[J]. Acta Optica Sinica, 42, 0327006(2022).

    [6] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [7] Khorasaninejad M, Chen W T, Devlin R et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [8] Wang Q, Rogers E T F, Gholipour B et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 10, 60-65(2016).

    [9] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [10] Solntsev A S, Agarwal G S, Kivshar Y S. Metasurfaces for quantum photonics[J]. Nature Photonics, 15, 327-336(2021).

    [11] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).

    [12] Traverso A J, Huang J N, Peyronel T et al. Low-loss, centimeter-scale plasmonic metasurface for ultrafast optoelectronics[J]. Optica, 8, 202-207(2021).

    [13] Xiao F J, Zhao J L. Plasmonic mode control based on vector beams[J]. Acta Optica Sinica, 43, 1623002(2023).

    [14] Feng J, Wang B, Chen X F. Photonic spin Hall effect in micro-and nano-optics[J]. Acta Optica Sinica, 43, 1623003(2023).

    [15] Zhang Z H, Liu P B, Lu W L et al. High-Q collective Mie resonances in monocrystalline silicon nanoantenna arrays for the visible light[J]. Fundamental Research, 3, 822-830(2023).

    [16] Zhang Z H, Xu C J, Liu C et al. Dual control of enhanced quasi-bound states in the continuum emission from resonant c-Si metasurfaces[J]. Nano Letters, 23, 7584-7592(2023).

    [17] Liu P B, Zhang Z H, Lang M et al. Manipulating the directional emission of monolayer semiconductors by dielectric nanoantenna arrays[J]. Journal of Optics, 24, 024005(2022).

    [18] Vaskin A, Kolkowski R, Koenderink A F et al. Light-emitting metasurfaces[J]. Nanophotonics, 8, 1151-1198(2019).

    [19] Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen[J]. Annalen Der Physik, 330, 377-445(1908).

    [20] Kivshar Y, Miroshnichenko A. Meta-optics with Mie resonances[J]. Optics and Photonics News, 28, 24-31(2017).

    [21] Rigneault H, Lemarchand F, Sentenac A et al. Extraction of light from sources located inside waveguide grating structures[J]. Optics Letters, 24, 148-150(1999).

    [22] Koenderink A F. Single-photon nanoantennas[J]. ACS Photonics, 4, 710-722(2017).

    [23] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 96, 113002(2006).

    [24] Lozano G, Rodriguez S R, Verschuuren M A et al. Metallic nanostructures for efficient LED lighting[J]. Light: Science & Applications, 5, e16080(2016).

    [25] Lozano G, Louwers D J, Rodríguez S R et al. Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources[J]. Light: Science & Applications, 2, e66(2013).

    [26] Lozano G, Grzela G, Verschuuren M A et al. Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices[J]. Nanoscale, 6, 9223-9229(2014).

    [27] Iyer P P, DeCrescent R A, Mohtashami Y et al. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces[J]. Nature Photonics, 14, 543-548(2020).

    [28] Mohtashami Y, DeCrescent R A, Heki L K et al. Light-emitting metalenses and meta-axicons for focusing and beaming of spontaneous emission[J]. Nature Communications, 12, 3591(2021).

    [29] Mao P, Liu C X, Li X Y et al. Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs[J]. Light: Science & Applications, 10, 180(2021).

    [30] Curto A G, Volpe G, Taminiau T H et al. Unidirectional emission of a quantum dot coupled to a nanoantenna[J]. Science, 329, 930-933(2010).

    [31] Ho J, Fu Y H, Dong Z G et al. Highly directive hybrid metal-dielectric Yagi-Uda nanoantennas[J]. ACS Nano, 12, 8616-8624(2018).

    [32] Langguth L, Schokker A H, Guo K et al. Plasmonic phase-gradient metasurface for spontaneous emission control[J]. Physical Review B, 92, 205401(2015).

    [33] Xiang C Y, Koo W, So F et al. A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices[J]. Light: Science & Applications, 2, e74(2013).

    [34] Wang M S, Lin J, Hsiao Y C et al. Investigating underlying mechanism in spectral narrowing phenomenon induced by microcavity in organic light emitting diodes[J]. Nature Communications, 10, 1614(2019).

    [35] Joo W J, Kyoung J, Esfandyarpour M et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch[J]. Science, 370, 459-463(2020).

    [36] Peyronel T, Quirk K J, Wang S C et al. Luminescent detector for free-space optical communication[J]. Optica, 3, 787-792(2016).

    [37] Dong Y R, Shi M, Yang X L et al. Nanopatterned luminescent concentrators for visible light communications[J]. Optics Express, 25, 21926-21934(2017).

    [38] Wang S J, Le-Van Q, Peyronel T et al. Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection[J]. ACS Photonics, 5, 2478-2485(2018).

    [39] Lenef A, Piquette A, Kelso J. Thermodynamics of light extraction from luminescent materials[J]. ECS Journal of Solid State Science and Technology, 7, R3211-R3226(2018).

    [40] Zhu Z C, Wu S, Xue C F et al. Enhanced light extraction of scintillator using large-area photonic crystal structures fabricated by soft-X-ray interference lithography[J]. Applied Physics Letters, 106, 241901(2015).

    [41] Nagarkar V V, Gupta T K, Miller S et al. Structured CsI(Tl) scintillators for X-ray imaging applications[J]. IEEE Transactions on Nuclear Science, 45, 492-496(1998).

    [42] Baccaro S, Blaẑek K, de Notaristefani F et al. Scintillation properties of YAP∶Ce[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 361, 209-215(1995).

    [43] Chen Q S, Wu J, Ou X Y et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 561, 88-93(2018).

    [44] Murai S, Zhang F F, Aichi K et al. Photoluminescence engineering with nanoantenna phosphors[J]. Journal of Materials Chemistry C, 11, 472-479(2023).

    [45] Zhang F, Huang Y, Guo Y Z et al. Wavelength-independent light extraction enhancement by nanostructures for scintillators with broadband emission[J]. Applied Physics Letters, 122, 253502(2023).

    [46] Wang S J, Li S L, Chervy T et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature[J]. Nano Letters, 16, 4368-4374(2016).

    [47] Chervy T, Azzini S, Lorchat E et al. Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons[J]. ACS Photonics, 5, 1281-1287(2018).

    [48] Rong K X, Wang B, Reuven A et al. Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal[J]. Nature Nanotechnology, 15, 927-933(2020).

    [49] Overvig A, Yu N F, Alù A. Chiral quasi-bound states in the continuum[J]. Physical Review Letters, 126, 073001(2021).

    [50] Kim S, Woo B H, An S C et al. Topological control of 2D perovskite emission in the strong coupling regime[J]. Nano Letters, 21, 10076-10085(2021).

    [51] Tian J Y, Adamo G, Liu H L et al. Optical rashba effect in a light-emitting perovskite metasurface[J]. Advanced Materials, 34, 2109157(2022).

    [52] Liu S J, Liu X, Wu Y Z et al. Circularly polarized perovskite luminescence with dissymmetry factor up to 1.9 by soft helix bilayer device[J]. Matter, 5, 2319-2333(2022).

    [53] Zhang X D, Liu Y L, Han J C et al. Chiral emission from resonant metasurfaces[J]. Science, 377, 1215-1218(2022).

    [54] Chen Y, Feng J G, Huang Y Q et al. Compact spin-valley-locked perovskite emission[J]. Nature Materials, 22, 1065-1070(2023).

    [55] Chen Y, Deng H C, Sha X B et al. Observation of intrinsic chiral bound states in the continuum[J]. Nature, 613, 474-478(2023).

    [56] Shi Y H, Duan P F, Huo S W et al. Chiral perovskite nanocrystals: endowing perovskite nanocrystals with circularly polarized luminescence[J]. Advanced Materials, 30, 1870081(2018).

    [57] Ma J Q, Fang C, Chen C et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence[J]. ACS Nano, 13, 3659-3665(2019).

    [58] Yang X F, Zhou M H, Wang Y F et al. Electric-field-regulated energy transfer in chiral liquid crystals for enhancing upconverted circularly polarized luminescence through steering the photonic bandgap[J]. Advanced Materials, 32, 2000820(2020).

    [59] Yang X F, Jin X, Zhao T H et al. Circularly polarized luminescence in chiral nematic liquid crystals: generation and amplification[J]. Materials Chemistry Frontiers, 5, 4821-4832(2021).

    [60] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).

    [61] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [62] Bi Q H, Peng Y J, Chen R et al. Theory and application of bound states in the continuum in photonics[J]. Acta Optica Sinica, 43, 1623008(2023).

    [63] Wang S J, Le-Van Q, Vaianella F et al. Limits to strong coupling of excitons in multilayer WS2 with collective plasmonic resonances[J]. ACS Photonics, 6, 286-293(2019).

    [64] Shen F H, Zhang Z H, Zhou Y Q et al. Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition[J]. Nature Communications, 13, 5597(2022).

    [65] Zhang Y H, Zhang Z H, Xu C J et al. Precisely constructing hybrid nanogap arrays via wet-transfer of dielectric metasurfaces onto a plasmonic mirror[J]. Optics Express, 31, 34280-34291(2023).

    [66] Sadrieva Z, Frizyuk K, Petrov M et al. Multipolar origin of bound states in the continuum[J]. Physical Review B, 100, 115303(2019).

    [67] Murai S, Castellanos G W, Raziman T V et al. Enhanced light emission by magnetic and electric resonances in dielectric metasurfaces[J]. Advanced Optical Materials, 8, 1902024(2020).

    [68] Staude I, Miroshnichenko A E, Decker M et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 7, 7824-7832(2013).

    [69] Tseng M L, Jahani Y, Leitis A et al. Dielectric metasurfaces enabling advanced optical biosensors[J]. ACS Photonics, 8, 47-60(2021).

    [70] Kühne J, Wang J, Weber T et al. Fabrication robustness in BIC metasurfaces[J]. Nanophotonics, 10, 4305-4312(2021).

    [71] Wang J, Kühne J, Karamanos T et al. All-dielectric crescent metasurface sensor driven by bound states in the continuum[J]. Advanced Functional Materials, 31, 2104652(2021).

    [72] Baranov D G, Zuev D A, Lepeshov S I et al. All-dielectric nanophotonics: the quest for better materials and fabrication techniques[J]. Optica, 4, 814-825(2017).

    [73] Yang W H, Xiao S M, Song Q H et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 11, 1864(2020).

    [74] Zywietz U, Evlyukhin A B, Reinhardt C et al. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses[J]. Nature Communications, 5, 3402(2014).

    [75] Zhang C Y, Xu Y, Liu J et al. Lighting up silicon nanoparticles with Mie resonances[J]. Nature Communications, 9, 2964(2018).

    [76] Zhou Z P, Li J T, Su R B et al. Efficient silicon metasurfaces for visible light[J]. ACS Photonics, 4, 544-551(2017).

    [77] Bucher T, Vaskin A, Mupparapu R et al. Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces[J]. ACS Photonics, 6, 1002-1009(2019).

    [78] Kern J, Trügler A, Niehues I et al. Nanoantenna-enhanced light-matter interaction in atomically thin WS2[J]. ACS Photonics, 2, 1260-1265(2015).

    [79] Butun S, Tongay S, Aydin K. Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays[J]. Nano Letters, 15, 2700-2704(2015).

    [80] Du Y X, Ao X Y, Cai Y J. High-Q surface lattice resonances[J]. Acta Optica Sinica, 43, 1623005(2023).

    [81] Eizagirre Barker S, Wang S J, Godiksen R H et al. Preserving the emission lifetime and efficiency of a monolayer semiconductor upon transfer[J]. Advanced Optical Materials, 7, 1900351(2019).

    [82] Li F. Fabrication and characterization of ZnO-based microcavities working in the strong coupling regime: polariton laser[D], 56-60(2013).

    [83] Yadav R K, Bourgeois M R, Cherqui C et al. Room temperature weak-to-strong coupling and the emergence of collective emission from quantum dots coupled to plasmonic arrays[J]. ACS Nano, 14, 7347-7357(2020).

    [84] Zheludev N I, Prosvirnin S L, Papasimakis N et al. Lasing spaser[J]. Nature Photonics, 2, 351-354(2008).

    [85] Oulton R F, Sorger V J, Zentgraf T et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 461, 629-632(2009).

    [86] Suh J Y, Kim C H, Zhou W et al. Plasmonic bowtie nanolaser arrays[J]. Nano Letters, 12, 5769-5774(2012).

    [87] Zhou W, Dridi M, Suh J Y et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 8, 506-511(2013).

    [88] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [89] Hakala T K, Rekola H T, Väkeväinen A I et al. Lasing in dark and bright modes of a finite-sized plasmonic lattice[J]. Nature Communications, 8, 13687(2017).

    [90] Ha S T, Fu Y H, Emani N K et al. Directional lasing in resonant semiconductor nanoantenna arrays[J]. Nature Nanotechnology, 13, 1042-1047(2018).

    [91] Fernandez-Bravo A, Wang D Q, Barnard E S et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons[J]. Nature Materials, 18, 1172-1176(2019).

    [92] Guan J, Sagar L K, Li R et al. Quantum dot-plasmon lasing with controlled polarization patterns[J]. ACS Nano, 14, 3426-3433(2020).

    [93] Wu M F, Ha S T, Shendre S et al. Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum[J]. Nano Letters, 20, 6005-6011(2020).

    [94] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).

    [95] Tripathi A, Kim H R, Tonkaev P et al. Lasing action from anapole metasurfaces[J]. Nano Letters, 21, 6563-6568(2021).

    [96] Wu M F, Ding L, Sabatini R P et al. Bound state in the continuum in nanoantenna-coupled slab waveguide enables low-threshold quantum-dot lasing[J]. Nano Letters, 21, 9754-9760(2021).

    [97] Yang J H, Huang Z T, Maksimov D N et al. Low-threshold bound state in the continuum lasers in hybrid lattice resonance metasurfaces[J]. Laser & Photonics Reviews, 15, 2100118(2021).

    [98] Azzam S I, Chaudhuri K, Lagutchev A et al. Single and multi-mode directional lasing from arrays of dielectric nanoresonators[J]. Laser & Photonics Reviews, 15, 2000411(2021).

    [99] Zhai Z S, Li Z, Du Y X et al. Multimode vortex lasing from dye-TiO2 lattices via bound states in the continuum[J]. ACS Photonics, 10, 437-446(2023).

    [100] Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals[J]. Physical Review, 112, 1555-1567(1958).

    [101] Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices[J]. Nature Materials, 15, 1061-1073(2016).

    [102] Li F, Xiong Q H. Thirty years of cavity polaritons: the past, present and future[J]. Physics, 51, 445-453(2022).

    [103] Weisbuch C, Nishioka M, Ishikawa A et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity[J]. Physical Review Letters, 69, 3314-3317(1992).

    [104] Imamoglu A, Ram R J, Pau S et al. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers[J]. Physical Review A, 53, 4250-4253(1996).

    [105] Kasprzak J, Richard M, Kundermann S et al. Bose-einstein condensation of exciton polaritons[J]. Nature, 443, 409-414(2006).

    [106] Christmann G, Butté R, Feltin E et al. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity[J]. Applied Physics Letters, 93, 051102(2008).

    [107] Das A, Heo J, Jankowski M et al. Room temperature ultralow threshold GaN nanowire polariton laser[J]. Physical Review Letters, 107, 066405(2011).

    [108] Guillet T, Mexis M, Levrat J et al. Polariton lasing in a hybrid bulk ZnO microcavity[J]. Applied Physics Letters, 99, 161104(2011).

    [109] Su R, Diederichs C, Wang J et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Letters, 17, 3982-3988(2017).

    [110] Ramezani M, Halpin A, Fernández-Domínguez A I et al. Plasmon-exciton-polariton lasing[J]. Optica, 4, 31-37(2016).

    [111] Shang Q Y, Li M L, Zhao L Y et al. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser[J]. Nano Letters, 20, 6636-6643(2020).

    [112] Zhao J X, Su R, Fieramosca A et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature[J]. Nano Letters, 21, 3331-3339(2021).

    [113] Ardizzone V, Riminucci F, Zanotti S et al. Polariton Bose-Einstein condensate from a bound state in the continuum[J]. Nature, 605, 447-452(2022).

    [114] Castellanos G W, Ramezani M, Murai S et al. Non-equilibrium Bose-Einstein condensation of exciton-polaritons in silicon metasurfaces[J]. Advanced Optical Materials, 11, 2202305(2023).

    [115] Berghuis A M, Castellanos G W, Murai S et al. Room temperature exciton-polariton condensation in silicon metasurfaces emerging from bound states in the continuum[J]. Nano Letters, 23, 5603-5609(2023).

    [116] Chen H, Jiang Z H, Hu H T et al. Sub-50-ns ultrafast upconversion luminescence of a rare-earth-doped nanoparticle[J]. Nature Photonics, 16, 651-657(2022).

    [117] Canós Valero A, Shamkhi H K, Kupriianov A S et al. Superscattering emerging from the physics of bound states in the continuum[J]. Nature Communications, 14, 4689(2023).

    [118] Dong Z G, Wang T, Chi X et al. Ultraviolet interband plasmonics with Si nanostructures[J]. Nano Letters, 19, 8040-8048(2019).

    Tools

    Get Citation

    Copy Citation Text

    Shaojun Wang, Zhenghe Zhang, Ziyue Hou, Yiheng Zhai, Chaojie Xu, Xiaofeng Li. Metasurfaces for Manipulating and Controlling Visible-Light Emission and Its Diverse Applications (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0323001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Oct. 7, 2023

    Accepted: Nov. 7, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Wang Shaojun (swang.opto@suda.edu.cn), Xu Chaojie (cjxu@suda.edu.cn), Li Xiaofeng (xfli@suda.edu.cn)

    DOI:10.3788/LOP232221

    Topics