Acta Physica Sinica, Volume. 68, Issue 22, 224206-1(2019)

Research progress of topological photonics

Hong-Fei Wang1, Bi-Ye Xie1, Peng Zhan1,2,3, Ming-Hui Lu1,3,4、*, and Yan-Feng Chen1,3
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
  • 2School of Physics, Nanjing University, Nanjing 210093, China
  • 3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 4Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing 210093, China
  • show less
    Figures & Tables(12)
    Schematic of the SSH model, there are two sites in each unit cell.SSH模型示意图, 每个元胞包含两个格点
    (a) SEM image of the coupled micropillars; (b) Modes of single micropillars; (c) Different modes of the micropillar array and edge states; (d) SSH microring array.(a) 微纳加工(SSH 模型)的SEM图; (b) 单个柱子的模式; (c) 不同能带中的态及存在的边界态; (d) 利用波导环形阵列实现SSH模型
    (a) Schematic of the gyromagnetic photonic crystal; (b) forward and backward spectra, and projected band structures with chiral edge states; (c) the diagram of large Chern number photonic crystals; (d) the band gap map and their Chern number.(a) 旋磁光子晶体的示意图; (b) 向前向后的传输谱以及具有手性边界态的投影能带; (c) 大陈数光子晶体结构图; (d) 能带的带隙及其陈数
    (a) The polarization of LCP and RCP on the Poincaré sphere, and the photonic crystal consisting of PE and PM superlattices; (b) band structures without coupling between dseudospin states and with their coupling, and the projected band structures for the latter case; (c) photonic crystals consisting of metallic rods and collars at different positions, and their band strucutres.(a) Poincaré球上的LCP和RCP, 以及由PE和PM材料构成的光子晶体; (b) 没有赝自旋耦合以及具有赝自旋耦合的能带以及后者的投影能带; (c) 通过调节金属柱子实现赝自旋的耦合
    (a) Schematic of all-dielectric photonic crystals; (b) band structures of shrinking and expanding lattices; (c) visualization of pseudospin-dependent edge states.(a) 全介质光子晶体结构; (b) 收缩、高对称以及扩张晶格所对应的能带; (c) 赝自旋依赖的边界态的实验观测
    (a) Two coupled resonators in one unit cell; (b) a periodic array arranged by unit cells.(a) 谐振腔耦合单元; (b) 周期排布形成的耦合阵列
    (a) The resonator lattice with dynamic modulation; (b) floquet topological insulators using the femtosecond laser writing method; (c) four different bonds with different coupling.(a) 光学谐振腔阵列的动态调制; (b) 激光直写波导系统的拓扑绝缘体构型; (c) 四种耦合组成的周期构型
    (a) Photonic crystals with two gyroid structures in one unit cell, and their band structures with Weyl points or nodal-line; (b) schematic of photonic crystals with the saddle-shaped metallic inclusion, and their Weyl points.(a) 能够产生Weyl点以及节线的双螺旋光子晶体; (b) 具有Weyl点的金属夹杂的光子晶体
    (a) 3 D all-dielectric and bianisotropic metacrystals; (b) band structures corresponding to two structures in (a); (c) photonic crystals with opened Dirac points when magnetization is applied on rods.(a) 三维全介质与双各向异性光子晶体; (b) 两种构型的光子晶体对应的能带; (c) 通过引入磁场破缺Dirac点的光子晶体构型
    (a) Exceptional points in momentum space, and the tight-binding model with gain and loss for αi and βi; (b) the waveguide array with gain and loss; (c) photonic crystal slabs with the ring of exceptional points.(a) 动量空间中的奇异点以及具有增益损耗的紧束缚模型; (b) 具有增益损耗的波导阵列; (c) 具有奇异环的光子晶体板结构
    (a) The nonlinear SSH model; (b) the winding number (Berry phase) changed by intensity; (c) schematic diagram of qubits and their couplers in 2 D lattice; (d) the superconducting circuit including three qubits.(a) 非线性SSH模型; (b) 与光强度相关的环绕数(贝利相位); (c) 将量子比特与它们的耦合器铺成二维格子的示意图; (d) 包含三个超导量子比特的超导回路
    (a) Photonic crystals of the 2D SSH model consisting of dielectric pillars; (b) band structures of shrinking, high symmetry and expending structures; (c) shrinking supercells contain expanding supercells, and the relationship between solution numbers and eigenfrequencies; (d) experimentally measured corner states when the source is placed at the corner.(a) 介质柱构成的二维SSH模型的光子晶体; (b) 收缩、高对称与扩张晶格构型的能带结构; (c) 由收缩区域包围扩张区域构成的整体结构, 解的序号与本征频率的关系; (d) 实验中放于一个角的源激发的拐角态
    Tools

    Get Citation

    Copy Citation Text

    Hong-Fei Wang, Bi-Ye Xie, Peng Zhan, Ming-Hui Lu, Yan-Feng Chen. Research progress of topological photonics[J]. Acta Physica Sinica, 2019, 68(22): 224206-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 20, 2019

    Accepted: --

    Published Online: Sep. 17, 2020

    The Author Email:

    DOI:10.7498/aps.68.20191437

    Topics