Journal of Innovative Optical Health Sciences, Volume. 8, Issue 3, 1541005(2015)

Multi-layered tissue head phantoms for noninvasive optical diagnostics

M. S. Wróbel1,*... A. P. Popov2, A. V. Bykov2, M. Kinnunen2, M. Jedrzejewska-Szczerska1, and V. V. Tuchin2,34 |Show fewer author(s)
Author Affiliations
  • 1Department of Metrology and Optoelectronics Gdansk University of Technology Gabriela Narutowicza Street 11/12 80-233 Gdansk, Poland
  • 2Optoelectronics and Measurement Techniques Laboratory Faculty of Information Technology and Electrical Engineering University of Oulu, P. O. Box 4500 FI-90014 Oulu, Finland
  • 3Research-Educational Institute of Optics and Biophotonics Saratov State University, Saratov 410012, Russia
  • 4Institute of Precise Mechanics and Control Russian Academy of Sciences, Saratov 410028, Russia
  • show less
    References(53)

    [1] [1] M. Ferrari, L. Mottola, V. Quaresima, "Principles, techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. Rev. Can. Physiol. Appliquee 29, 463–487 (2004).

    [2] [2] M. L. Clarke, J. Y. Lee, D. V. Samarov, D. W. Allen, M. Litorja, R. Nossal, J. Hwang, "Designing microarray phantoms for hyperspectral imaging validation," Biomed. Opt. Express 3, 1291–1299 (2012).

    [3] [3] R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, C. K. Sen, "Dual-mode imaging of cutaneous tissue oxygenation and vascular function," J. Vis. Exp. 46, e2095 (2010).

    [4] [4] J. Hwang, J. C. Ramella-Roman, R. Nordstrom, "Introduction: Feature issue on phantoms for the performance evaluation and validation of optical medical imaging devices," Biomed. Opt. Express 3, 1399–1403 (2012).

    [5] [5] B. W. Pogue, M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041102 (2006).

    [6] [6] G. Lamouche et al., "Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography," Biomed. Opt. Express 3, 1381–1398 (2012).

    [7] [7] T. T. Nguyen, H. N. Le, M. Vo, Z. Wang, L. Luu, J. C. Ramella-Roman, "Three-dimensional phantoms for curvature correction in spatial frequency domain imaging," Biomed. Opt. Express 3, 1200– 1214 (2012).

    [8] [8] A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O'Sullivan, S. Keene, H. Haghany, T. Quang, "Tissue phantoms in multicenter clinical trials for diffuse optical technologies," Biomed. Opt. Express 3, 966–971 (2012).

    [9] [9] J. R. Cook, R. R. Bouchard, S. Y. Emelianov, "Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging," Biomed. Opt. Express 2, 3193– 3206 (2011).

    [10] [10] A. V. Bykov, A. P. Popov, M. Kinnunen, T. Pryk ri, A. V. Priezzhev, R. Myllyl , "Skin phantoms with realistic vessel structure for OCT measurements," Proc. SPIE 7376, 73760F (2010).

    [11] [11] A. V. Bykov, A. P. Popov, A. V. Priezzhev, R. Myllyla, "Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging," Proc. SPIE 8091, 80911R (2011).

    [12] [12] A. Agrawal, M. Connors, A. Beylin, C.-P. Liang, D. Barton, Y. Chen, R. A. Drezek, T. J. Pfefer, "Characterizing the point spread function of retinal OCT devices with a model eye-based phantom," Biomed. Opt. Express 3, 1116–1126 (2012).

    [13] [13] L. Luu, P. A. Roman, S. A. Mathews, J. C. Ramella- Roman, "Microfluidics based phantoms of superfi- cial vascular network," Biomed. Opt. Express 3, 1350–1364 (2012).

    [14] [14] S. L. Jacques, B. Wang, R. Samatham, "Reflectance confocal microscopy of optical phantoms," Biomed. Opt. Express 3, 1162–1172 (2012).

    [15] [15] A. J. Macnab, R. E. Gagnon, "Phantom testing of two clinical spatially-resolved NIRS instruments," J. Spectrosc. 19, 165–169 (2005).

    [16] [16] R. J. Cooper, R. Eames, J. Brunker, L. C. Enfield, A. P. Gibson, J. C. Hebden, "A tissue equivalent phantom for simultaneous near-infrared optical tomography and EEG," Biomed. Opt. Express 1, 425–430 (2010).

    [17] [17] D. K. Joseph, T. J. Huppert, M. A. Franceschini, D. A. Boas, "Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142–8151 (2006).

    [18] [18] R. L. Barbour, R. Ansari, R. Al Abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, Y. Xu, "Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms," Proc. SPIE 6870, 687002–10 (2008).

    [19] [19] R. L. Barbour, H. L. Graber, Y. Xu, Y. Pei, C. H. Schmitz, D. S. Pfeil, A. Tyagi, R. Andronica, D. C. Lee, S.-L. S. Barbour, J.D. Nichols, M. E.Pflieger, "A programmable laboratory testbed in support of evaluation of functional brain activation and connectivity," IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 20, 170–183 (2012).

    [20] [20] D. D. Royston, R. S. Poston, S. A. Prahl, "Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm," J. Biomed. Opt. 1, 110–116 (1996).

    [21] [21] D. V. Samarov, M. L. Clarke, J. Y. Lee, D. W. Allen, M. Litorja, J. Hwang, "Algorithm validation using multicolor phantoms," Biomed. Opt. Express 3, 1300–1311 (2012).

    [22] [22] R. C. Chang, P. Johnson, C. M. Stafford, J. Hwang, "Fabrication and characterization of a multilayered optical tissue model with embedded scattering microspheres in polymeric materials," Biomed. Opt. Express 3, 1326 (2012).

    [23] [23] V. Kodach, N. Bosschaart, J. Kalkman, T. G. van Leeuwen, D. J. Faber, "Concentration dependent scattering coefficients of intralipid measured with OCT," Biomedical Optics 3-D Imaging, OSA Technical Digest (CD), paper BSuD11, Optical Society of America (2010).

    [24] [24] P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, R. Oliver, "Thermal stability of intralipid optical phantoms," Appl. Spectrosc. 67, 993–996 (2013).

    [25] [25] S. C. Kanick et al., "Scattering phase function spectrum makes reflectance spectrum measured from Intralipid phantoms and tissue sensitive to the device detection geometry," Biomed. Opt. Express 3, 1086–1100 (2012).

    [26] [26] E. L. Hull, M. G. Nichols, T. H. Foster, "Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes," Phys. Med. Biol. 43, 3381 (1998).

    [27] [27] V. O. Korhonen et al., "Light propagation in NIR spectroscopy of the human brain," IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).

    [28] [28] T. Myllyl , A. Popov, V. Korhonen, A. Bykov, M. Kinnunen, "Optical sensing of a pulsating liquid in a brain-mimicking phantom," Proc. SPIE 8799, 87990X (2013).

    [29] [29] H. S. S. Sorvoja, T. S. Myllyl , M. Y. Kirillin, E. A. Sergeeva, R. A. Myllyl , A. A. Elseoud, J. Nikkinen, O. Tervonen, V. Kiviniemi, "Non-invasive, MRIcompatible fibreoptic device for functional near-IR reflectometry of human brain," Quantum Electron. 40, 1067 (2010).

    [30] [30] E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21–31 (1997).

    [31] [31] V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Press (2007).

    [32] [32] M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650–950 nm," Phys. Med. Biol. 38, 503–510 (1993).

    [33] [33] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. Appl. Phys. 38, 2543–2555 (2005).

    [34] [34] P. van der Zee, M. Essenpreis, D. T. Delpy, "Optical properties of brain tissue," Proc. SPIE 1888, 454– 465 (1993).

    [35] [35] P. van der Zee, "Measurement and modelling of the optical properties of human tissue in the near infrared," PhD Thesis, University College London, London (1992).

    [36] [36] J. W. Pickering, S. A. Prahl, N. Van Wieringen, J. F. Beek, H. J. Sterenborg, M. J. Van Gemert, "Double-integrating-sphere system for measuring the optical properties of tissue," Appl. Opt. 32, 399– 410 (1993).

    [37] [37] S. A. Prahl, M. J. van Gemert, A. J. Welch, "Determining the optical properties of turbid media by using the adding–doubling method," Appl. Opt. 32, 559–568 (1993).

    [38] [38] J. Fu, G. Quan, H. Gong, "A simple method for prediction of the reduced scattering coefficient in tissue-simulating phantoms," J. Innov. Opt. Health Sci. 3, 53–59 (2010).

    [39] [39] H. Kang, M. L. Clarke, S. H. Lacerda, A. Karim, L. F. Pease, J. Hwang, "Multimodal optical studies of single and clustered colloidal quantum dots for the long-term optical property evaluation of quantum dot-based molecular imaging phantoms," Biomed. Opt. Express 3, 1312–1325 (2012).

    [40] [40] Q. Wang, K. Shastri, T. J. Pfefer, "Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue," Appl. Opt. 49, 5309–5320 (2010).

    [41] [41] T. Moffitt, Y.-C. Chen, S. A. Prahl, "Preparation and characterization of polyurethane optical phantoms," J. Biomed. Opt. 11, 041103 (2006).

    [42] [42] A. P. Popov, A. V. Priezzhev, R. Myllyl , "Effect of glucose concentration in a model light-scattering suspension on propagation of ultrashort laser pulses," Quantum Electron. 35, 1075 (2005).

    [43] [43] E. Alarousu, J. T. Hast, M. T. Kinnunen, M. Y. Kirillin, R. A. Myllyla, J. Plucinski, A. P. Popov, A. V. Priezzhev, T. Prykari, J. Saarela, Z. Zhao, "Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques," Proc. SPIE 5474, 33–41 (2004).

    [44] [44] M. T. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, A. V. Priezzhev, "Measurements of glucose content in scattering media with time-of- flight technique: Comparison with Monte Carlo simulations," Proc. SPIE 5474, 181–191 (2004).

    [45] [45] A. P. Popov, A. V. Bykov, S. Toppari, M. Kinnunen, A. V. Priezzhev, R. Myllyla, "Glucose sensing in flowing blood and intralipid by laser pulse timeof-fl ight and optical coherence tomography techniques," IEEE J. Sel. Top. Quantum Electron. 18, 1335–1342 (2012).

    [46] [46] H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, M. J. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm," Appl. Opt. 30, 4507–4514 (1991).

    [47] [47] S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, "Optical properties of Intralipid: A phantom medium for light propagation studies," Lasers Surg. Med. 12, 510–519 (1992).

    [48] [48] A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).

    [49] [49] D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, D. J. Faber, "Optical phantoms of varying geometry based on thin building blocks with controlled optical properties," J. Biomed. Opt. 15, 025001 (2010).

    [50] [50] J. Pluciński, A. F. Frydrychowski, J. Kaczmarek, W. Juzwa, "Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space," J. Biomed. Opt. 5, 291–299 (2000).

    [51] [51] P. Moilanen, Z. Zhao, P. Karppinen, T. Karppinen, V. Kilappa, J. Pirhonen, R. Myllyl , E. Haeggstr€om, J. Timonen, "Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms," Ultrasound Med. Biol. 40, 521–531 (2014).

    [52] [52] A. P. Popov, S. Haag, M. Meinke, J. Lademann, A. V. Priezzhev, R. Myllyl , "Effect of size of TiO2 nanoparticles applied onto glass slide and porcine skin on generation of free radicals under ultraviolet irradiation," J. Biomed. Opt. 14, 1011 (2009).

    [53] [53] A. Sarkar, A. Shchukarev, A.-R. Leino, K. Kordas, J.-P. Mikkola, P. O. Petrov, E. S. Tuchina, A. P. Popov, M. E. Darvin, M. C. Meinke, J. Lademann, V. V. Tuchin, "Photocatalytic activity of TiO2 nanoparticles: Effect of thermal annealing under various gaseous atmospheres," Nanotechnology 23, 475711 (2012).

    Tools

    Get Citation

    Copy Citation Text

    M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, V. V. Tuchin. Multi-layered tissue head phantoms for noninvasive optical diagnostics[J]. Journal of Innovative Optical Health Sciences, 2015, 8(3): 1541005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 3, 2014

    Accepted: Jun. 17, 2014

    Published Online: Jan. 10, 2019

    The Author Email: Wróbel M. S. (maciejswrobel@gmail.com)

    DOI:10.1142/s1793545815410059

    Topics