Laser & Optoelectronics Progress, Volume. 56, Issue 7, 070002(2019)

Research Progress of Two-Dimensional Layered Perovskite Materials and Their Applications

Na Han, Ting Ji*, Yanxia Cui**, Guohui Li, Hengkang Zhang, and Yuying Hao
Author Affiliations
  • Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • show less
    References(102)

    [12] Yang Y, You J B, Lei M. Efficient. /0033983 Al [P]. 2018-02-01.(2008).

    [15] Yoo E J, Lyu M Q, Yun J H et al. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3-xClx perovskite for resistive random access memory devices[J]. Advanced Materials, 27, 6170-6175(2015).

    [16] Kagan C R. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors[J]. Science, 286, 945-947(1999).

    [18] Patel J B, Milot R L, Wright A D et al. Formation dynamics of CH3NH3PbI3 perovskite following two-step layer deposition[J]. The Journal of Physical Chemistry Letters, 7, 96-102(2016).

    [50] Byun J, Cho H, Wolf C et al. Efficient visible quasi-2D perovskite light-emitting diodes[J]. Advanced Materials, 28, 7515-7520(2016).

    [51] Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites[J]. Chemphyschem, 15, 3733-3741(2014).

    [52] Estes W E, Losee D B, Hatfield W E. The magnetic properties of several quasi two-dimensional Heisenberg layer compounds: a new class of ferromagnetic insulators involving halocuprates[J]. The Journal of Chemical Physics, 72, 630-638(1980).

    [53] Zhang S J, Audebert P, Wei Y et al. Synthesis and optical properties of novel organic-inorganic hybrid UV (R-NH3)2PbCl4 semiconductors[J]. Journal of Materials Chemistry, 21, 466-474(2011).

    [54] Cortecchia D, Neutzner S, Srimath K et al. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation[J]. Journal of the American Chemical Society, 139, 39-42(2017).

    [55] Li L N, Sun Z H, Wang P et al. Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two-dimensional multilayered perovskite ferroelectric for a high-performance photodetector[J]. Angewandte Chemie International Edition, 56, 12150-12154(2017).

    [56] Sun Z H, Liu X T, Khan T et al. A photoferroelectric perovskite-type organometallic halide with exceptional anisotropy of bulk photovoltaic effects[J]. Angewandte Chemie International Edition, 55, 6545-6550(2016).

    [57] Saliba M, Matsui T, Seo J Y et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency[J]. Energy & Environmental Science, 9, 1989-1997(2016).

    [58] Li X, Ibrahim Dar M, Yi C Y et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J]. Nature Chemistry, 7, 703-711(2015).

    [59] Yang S, Wang Y, Liu P R et al. Functionalization of perovskite thin films with moisture-tolerant molecules[J]. Nature Energy, 1, 15016(2016).

    [60] Zhang F, Ye S, Hao Y Y et al. Improving of CH3NH3PbI3 perovskite morphology and crystallinity using different annealing-atmosphere[J]. Journal of Synthetic Crystals, 45, 2215-2221(2016).

    [61] Wang Q, Dong Q F, Li T et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells[J]. Advanced Materials, 28, 6734-6739(2016).

    [62] Wen X R, Wu J M, Ye M D et al. Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells[J]. Chemical Communications, 52, 11355-11358(2016).

    [63] Smith I C, Hoke E T, Solis-Ibarra D et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie International Edition, 53, 11232-11235(2014).

    [64] Jeon N J, Noh J H, Kim Y C et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 13, 897-903(2014).

    [65] Zhang F, Song J, Zhang L X et al. Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment[J]. Journal of Materials Chemistry A, 4, 8554-8561(2016).

    [66] Yao K, Wang X F, Xu Y X et al. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell[J]. Chemistry of Materials, 28, 3131-3138(2016).

    [67] Tsai H, Nie W Y, Blancon J C et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature, 536, 312-316(2016).

    [68] Mitzi D B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials[J]. Journal of Materials Chemistry, 21, 466-474(2011).

    [69] Zhang X, Munir R, Xu Z et al. Phase transition control for high performance Ruddlesden-Popper perovskite solar cells[J]. Advanced Materials, 30, 1707166(2018).

    [70] Zhang X, Ren X D, Liu B et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping[J]. Energy & Environmental Science, 10, 2095-2102(2017).

    [71] Wang Z P, Lin Q Q, Chmiel F P et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites[J]. Nature Energy, 2, 17135(2017).

    [72] Yao K, Wang X F, Xu Y X et al. A general fabrication procedure for efficient and stable planar perovskite solar cells: morphological and interfacial control by in-situ-generated layered perovskite[J]. Nano Energy, 18, 165-175(2015).

    [73] Ma C Y, Leng C Q, Ji Y X et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells[J]. Nanoscale, 8, 18309-18314(2016).

    [74] Bai Y, Xiao S, Hu C et al. Dimensional engineering of a graded 3D-2D halide perovskite interface enables ultrahigh VOC enhanced stability in the p-i-n photovoltaics[J]. Advanced Energy Materials, 7, 1701038(2017).

    [75] Zhang T Y, Dar M I, Li G et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI 3 perovskite phase for high-efficiency solar cells[J]. Science Advances, 3, e1700841(2017).

    [76] Liao J F, Rao H S, Chen B X et al. Dimension engineering on Cesium lead iodide for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 5, 2066-2072(2017).

    [77] Lin Y, Bai Y, Fang Y J et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures[J]. The Journal of Physical Chemistry Letters, 9, 654-658(2018).

    [78] Sendner M, Nayak P K, Egger D A et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport[J]. Materials Horizons, 3, 613-620(2016).

    [79] Veldhuis S A, Boix P P, Yantara N et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 28, 6804-6834(2016).

    [80] Hu H W, Salim T, Chen B B et al. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes[J]. Scientific Reports, 6, 33546(2016).

    [81] Shirasaki Y, Supran G J, Tisdale W A et al. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes[J]. Physical Review Letters, 110, 217403(2013).

    [82] Chen W B, Ma H, Ye J X et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 54, 110003(2017).

    [83] Bae W K, Park Y S, Lim J et al. Controlling the influence of auger recombination on the performance of quantum-dot light-emitting diodes[J]. Nature Communications, 4, 2661(2013).

    [84] Kim M H, Schubert M F, Dai Q et al. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Applied Physics Letters, 91, 183507(2007).

    [85] Mashford B S, Stevenson M, Popovic Z et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection[J]. Nature Photonics, 7, 407-412(2013).

    [86] Caruge J M, Halpert J E, Wood V et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics, 2, 247-250(2008).

    [87] Hoke E T, Slotcavage D J, Dohner E R et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 6, 613-617(2015).

    [88] Era M, Morimoto S, Tsutsui T et al. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4[J]. Applied Physics Letters, 65, 676-678(1994).

    [89] Chondroudis K, Mitzi D B. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers[J]. Chemistry of Materials, 11, 3028-3030(1999).

    [90] Dohner E R, Hoke E T, Karunadasa H I. Self-assembly of broadband white-light emitters[J]. Journal of the American Chemical Society, 136, 1718-1721(2014).

    [91] Dohner E R, Jaffe A, Bradshaw L R et al. Intrinsic white-light emission from layered hybrid perovskites[J]. Journal of the American Chemical Society, 136, 13154-13157(2014).

    [92] Liang D, Peng Y L, Fu Y P et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates[J]. ACS Nano, 10, 6897-6904(2016).

    [93] Xiao Z G, Kerner R A, Zhao L F et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites[J]. Nature Photonics, 11, 108-115(2017).

    [94] Zhang S T, Yi C, Wang N N et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells[J]. Advanced Materials, 29, 1606600(2017).

    [95] Tian Y, Zhou C K, Worku M et al. Light-emitting diodes: highly efficient spectrally stable red perovskite light-emitting diodes[J]. Advanced Materials, 30, 1870142(2018).

    [96] Jia G, Shi Z J, Xia Y D et al. Super air stable quasi-2D organic-inorganic hybrid perovskites for visible light-emitting diodes[J]. Optics Express, 26, A66-A74(2018).

    [97] Yang X L, Zhang X W, Deng J X et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation[J]. Nature Communications, 9, 570(2018).

    [98] Tsai H, Nie W Y, Blancon J C et al. Stable light-emitting diodes using phase-pure ruddlesden-popper layered perovskites[J]. Advanced Materials, 30, 1704217(2018).

    [99] Gao X Y, Zhang Y, Cui Y X et al. Research progress in organic photomultiplication photodetector[J]. Laser & Optoelectronics Progress, 55, 070001(2018).

    [100] Wang J J, Zhao Z P, Liu J G. Research progress and development trend of balanced photodetectors[J]. Laser & Optoelectronics Progress, 55, 100001(2018).

    [101] Ahmad S, Kanaujia P K, Beeson H J et al. Strong photocurrent from two-dimensional excitons in solution-processed stacked perovskite semiconductor sheets[J]. ACS Applied Materials & Interfaces, 7, 25227-25236(2015).

    [102] Zhou J, Chu Y, Huang J. Photodetectors based on two-dimensional layer-structured hybrid lead Iodide perovskite semiconductors[J]. ACS Applied Materials & Interfaces, 8, 25660-25666(2016).

    [103] Tan Z J, Wu Y, Hong H et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector[J]. Journal of the American Chemical Society, 138, 16612-16615(2016).

    Tools

    Get Citation

    Copy Citation Text

    Na Han, Ting Ji, Yanxia Cui, Guohui Li, Hengkang Zhang, Yuying Hao. Research Progress of Two-Dimensional Layered Perovskite Materials and Their Applications[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 21, 2018

    Accepted: Oct. 26, 2018

    Published Online: Jul. 30, 2019

    The Author Email: Ji Ting (jiting@tyut.edu.com), Cui Yanxia (yanxiacui@gmail.com)

    DOI:10.3788/LOP56.070002

    Topics