Acta Optica Sinica, Volume. 43, Issue 3, 0322001(2023)

Design of Thin Wideband Absorber Based on Lossy Capacitive Surface of Dipole Square Ring Crossed Element

Yifu Lin1,2, Xianzhao Yang1、*, and Xiangcheng Li2、**
Author Affiliations
  • 1Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • 2State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • show less
    References(26)

    [1] Kim Y, Deng T W, Jiang W X et al. Robust control of a multifrequency metamaterial cloak featuring intrinsic harmonic selection[J]. Physical Review Applied, 10, 044027(2018).

    [2] Kadic M, Bückmann T, Schittny R et al. Metamaterials beyond electromagnetism[J]. Reports on Progress in Physics, 76, 126501(2013).

    [3] Alekseev G V, Tereshko D A. Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices[J]. International Journal of Heat and Mass Transfer, 135, 1269-1277(2019).

    [4] Henríquez V C, García-Chocano V M, Sánchez-Dehesa J. Viscothermal losses in double-negative acoustic metamaterials[J]. Physical Review Applied, 8, 014029(2017).

    [5] Chen T Y, Weng C N, Tsai Y L. Materials with constant anisotropic conductivity as a thermal cloak or concentrator[J]. Journal of Applied Physics, 117, 054904(2015).

    [6] Dede E M, Nomura T, Lee J. Thermal-composite design optimization for heat flux shielding, focusing, and reversal[J]. Structural and Multidisciplinary Optimization, 49, 59-68(2014).

    [7] Li W W, Chen M J, Zeng Z H et al. Broadband composite radar absorbing structures with resistive frequency selective surface: optimal design, manufacturing and characterization[J]. Composites Science and Technology, 145, 10-14(2017).

    [8] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 48, 1230-1234(2000).

    [9] Yang J P, Wang M C, Deng H et al. Dual-band terahertz sensor based on metamaterial absorber integrated microfluidic[J]. Acta Optica Sinica, 41, 2328001(2021).

    [10] Deng Y D, Song Z Y. Manipulating polarization and electromagnetically induced transparency in a switchable metamaterial[J]. Optical Materials, 105, 109972(2020).

    [11] Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 9, 129-132(2010).

    [12] Qu S C, Sheng P. Microwave and acoustic absorption metamaterials[J]. Physical Review Applied, 17, 047001(2022).

    [13] Zheng L, Yang X Z, Gong W et al. Ultralow thickness-bandwidth ratio magnetic absorber with printed FSS for S&C bands[J]. IEEE Antennas and Wireless Propagation Letters, 21, 576-580(2022).

    [14] Sun S L, He Q, Hao J M et al. High-efficiency manipulations on electromagnetic waves with metasurfaces[J]. Acta Optica Sinica, 41, 0123003(2021).

    [15] Chen C X, Can S, Schalch J et al. Ultrathin terahertz triple-band metamaterial absorbers: consideration of interlayer coupling[J]. Physical Review Applied, 14, 054021(2020).

    [16] Bharti G, Jha K R, Singh G. A synthesis technique of single square loop frequency selective surface at terahertz frequency[J]. Optik, 125, 6428-6435(2014).

    [17] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [18] Liu Y H, Ren M N, Dong L J et al. Novel electromagnetic propagation in hyperbolic metamaterials with flat iso-frequency planes[J]. Acta Optica Sinica, 42, 0216001(2022).

    [19] Xu L J, Huang J P. Metamaterials for manipulating thermal radiation: transparency, cloak, and expander[J]. Physical Review Applied, 12, 044048(2019).

    [20] Deng G S, Sun H X, Lü K et al. Enhanced broadband absorption with a twisted multilayer metal-dielectric stacking metamaterial[J]. Nanoscale Advances, 3, 4804-4809(2021).

    [21] Chen H Y, Wang J F, Ma H et al. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances[J]. Journal of Applied Physics, 115, 154504(2014).

    [22] Jia Y T, Liu Y, Guo Y et al. A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 65, 3291-3295(2017).

    [23] Fang W, Fan D G, Xie X Y et al. A broadband radar cross section reduction metasurface based on polarization conversion and scattering cancellation[C](2019).

    [24] Qiu L N, Xiao G B, Kong X H et al. Broadband, polarization insensitive low-scattering metasurface based on lossy Pancharatnam-Berry phase particles[J]. Optics Express, 27, 21226-21238(2019).

    [25] Wang Y, Chen Z, Cui Q. Tunable terahertz broadband bandpass filter based on vanadium dioxide[J]. Acta Optica Sinica, 41, 2023002(2021).

    [26] Yang L J, Lü H L, Li M et al. Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties[J]. Chemical Engineering Journal, 392, 123666(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yifu Lin, Xianzhao Yang, Xiangcheng Li. Design of Thin Wideband Absorber Based on Lossy Capacitive Surface of Dipole Square Ring Crossed Element[J]. Acta Optica Sinica, 2023, 43(3): 0322001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Jul. 8, 2022

    Accepted: Aug. 10, 2022

    Published Online: Feb. 13, 2023

    The Author Email: Yang Xianzhao (yangxianzhao@wust.edu.cn), Li Xiangcheng (lixiangcheng@wust.edu.cn)

    DOI:10.3788/AOS221446

    Topics