Journal of the Chinese Ceramic Society, Volume. 51, Issue 6, 1595(2023)
Advanced in Preparation of Polymer Derived Al-Containing Silicon Carbide Ceramic Fibers
[1] [1] LI Y, XU Z, LI X H, et al. Preparation and high-temperature properties of skin-core structure SiC ceramic fibers[J]. J Mater Sci, 2022, 57(28): 13287-13299.
[2] [2] ZHANG H, GE M, ZHANG H F, et al. Oxidation resistance and thermal stability of the SiC-ZrB2 composite ceramic fibers[J]. J Am Ceram Soc, 2020, 104(4): 1633-1640.
[3] [3] OUYANG Q, WANG Y F, HUANG J, et al. TG-MS analysis on the degradation behavior and mechanism of amorphous SiCxOy phase in polyaluminocarbosilane-derived Si-Al-C-O fiber[J]. J Therm Anal Calorim, 2022, 147(21): 11759-11767.
[6] [6] YAJIMA S, HAYASHI J, OMORI M, et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature, 1976, 261(5562): 683-685.
[7] [7] YAJIMA S, HASEGAWA Y, OKAMURA K, et al. Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor[J]. Nature, 1978, 273(5663): 525-527.
[9] [9] ODA H, ISHIKAWA T. Microstructure and mechanical properties of SiC-polycrystalline fiber and new defect-controlling process[J]. Int J Appl Ceram Technol, 2017, 14(6): 1031-1040.
[11] [11] SMITH C, MORSCHER G. Determination of silicon carbide fiber electrical resistivity at elevated temperature[J]. Int J Appl Ceram Technol, 2017, 14(2): 228-235.
[13] [13] SOL F, BHATT R. Mapping the local modulus of sylramic silicon carbide fibers by nanoindentation[J]. Mater Lett, 2015, 159: 395-398.
[15] [15] WEISBARTH R, JANSEN M. Investigations on reactive coatings applied to Siboramic (SiBN3C) fibers[J]. J Mater Chem, 2003, 13(8): 1926-1929.
[16] [16] SILVESTRONI L, SCITI D, MELANDRI C, et al. Tyranno SA3 fiber-ZrB2 composites. part II: mechanical properties[J]. Mater Des 1980-2015, 2015, 65: 1264-1273.
[17] [17] HONG J, CHO K-Y, SHIN D-G, et al. Structural evolution of silicon carbide phase from the polycarbosilane cured with iodine: NMR study[J]. J Inorg Organomet Polym, 2018, 28(6): 2221-2230.
[18] [18] HONG J, KO Y, CHO K-Y, et al. In-situ generation of graphene network in silicon carbide fibers: role of iodine and carbon monoxide[J]. Carbon, 2020, 158: 110-120.
[19] [19] KHISHIGBAYAR K E, JOO Y J, CHO K Y. Microwave-assisted heating of electrospun SiC fiber mats[J]. J Korean Ceram Soc, 2017, 54(6): 499-505.
[20] [20] KIM T-E, KHISHIGBAYAR K-E, CHO K Y. Effect of heating rate on the properties of silicon carbide fiber with chemical-vapor-cured polycarbosilane fiber[J]. J Adv Ceram, 2017, 6(1): 59-66.
[21] [21] JOO Y J, KHISHIGBAYAR K-E, KIM C J, et al. Fabrication and morphological study of converged SiC-TiC fiber mats by electrospinning[J]. Adv Compos Mater, 2019, 28(4): 397-408.
[22] [22] JOO Y J, JOO S H, LEE H J, et al. Effect of impurities control on the crystallization and densification of polymer-derived SiC fibers[J]. Nanomaterials (Basel), 2021, 11(11): 2933.
[23] [23] WANG P, GOU Y, WANG H, et al. Revealing the formation mechanism of the skin-core structure in nearly stoichiometric polycrystalline SiC fibers[J]. J Eur Ceram Soc, 2020, 40(6): 2295-2305.
[24] [24] JI X Y, GAO H F, ZHANG S, et al. Fine-diameter Si-B-C-N ceramic fibers enabled by polyborosilazanes with N-methyl pendant group[J]. J Eur Ceram Soc, 2021, 41(10): 5016-5025.
[25] [25] LONG X, WU Z Y, SHAO C W, et al. High-temperature oxidation behavior of SiBN fibers in air[J]. J Adv Ceram, 2021, 10(4): 768-777.
[26] [26] DONG J, BAI W, HUANG G, et al. Development of polymer-derived SiC fiber[J]. IOP Conf Ser: Earth Environ Sci, 2020, 571(1): 012147.
[27] [27] MO R, YIN X W, LI M X, et al. Relationship between microstructure and electromagnetic properties of SiC fibers[J]. J Am Ceram Soc, 2020, 103(8): 4352-4362.
[31] [31] LV X X, YU S Q, GE M, et al. Synthesis and microstructure of continuous composite ceramic fibres of ZrC/ZrB2-SiC derived from polymeric precursors[J]. Ceram Int, 2016, 42(7): 9299-9303.
[32] [32] GE M, LV X X, ZHANG H, et al. Microstructures of a SiC-ZrC ceramic fiber derived from a polymeric precursor[J]. Materials (Basel), 2020, 13(9): 2142.
[33] [33] ZHANG H, GE M, SHUI H T, et al. Investigations on the thermal behaviours of SiC-ZrC continuous ceramic fibres[J]. J Eur Ceram Soc, 2021, 41(9): 4689-4696.
[40] [40] MAZERAT S, PAILLER R. Dataset on fractographic analysis of various SiC-based fibers[J]. Data Brief, 2021, 34: 106676.
[42] [42] ICHIKAWA H. Polymer-derived ceramic fibers[J]. Annu Rev Mater Res, 2016, 46(1): 335-356.
[45] [45] SHIMOO T, KATASE Y, OKAMURA K, et al. Carbon elimination by heat-treatment in hydrogen and its effect on thermal stability of polycarbosilane-derived silicon carbide fibers[J]. J Mater Sci, 2004, 39(20): 6243-6251.
[46] [46] DING D H, LUO F, SHI Y M, et al. Influence of thermal oxidation on complex permittivity and microwave absorbing potential of KD-I SiC fiber fabrics[J]. J Eng Fiber Fabr, 2014, 9(2): 99-104.
[47] [47] KIM H E, MOORHEAD A J. Strength of Nicalon silicon carbide fibers exposed to high‐temperature gaseous environments[J]. J Am Ceram Soc, 1991, 74(3): 666-669.
[49] [49] YAO R Q, FENG Z D, CHEN L F, et al. Oxidation behavior of Hi-Nicalon SiC monofilament fibres in air and O2-H2O-Ar atmospheres[J]. Corros Sci, 2012, 57: 182-191.
[56] [56] YUAN Q, LI Y Q, SONG Y C. Microstructure and thermal stability of low-oxygen SiC fibers prepared by an economical chemical vapor curing method[J]. Ceram Int, 2017, 43(12): 9128-9132.
[57] [57] ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al. High-strength alkali-resistant sintered SiC fibre stable to 2,200℃[J]. Nature, 1998, 391(6669): 773-775.
[58] [58] CUTLER I B, MILLER P D, RAFANIELLO W, et al. New materials in the Si-C-Al-O-N and related systems[J]. Nature, 1978, 275(5679): 434-435.
[59] [59] TANG X, CHEN L, CHENG X, et al. Temperature-dependent microstructure and phase evolution of iron-containing SiC fibers[J]. Ceram Int, 2014, 40(9): 14223-14227.
[60] [60] LIU A H, CHEN J M, DING S N, et al. Processing and characterization of cobalt silicide nanoparticle-containing silicon carbide fibers through a colloidal method and their underlying mechanism[J]. J Mater Chem C, 2014, 2(25): 4980-4988.
[61] [61] JACOBSON N S, KLINE S E. A thermoanalytical study of the conversion of amorphous Si-Ti-C-O fibers to SiC[J]. Int J Appl Ceram Technol, 2012, 9(4): 816-822.
[62] [62] ZHANG P, ZHENG Z B, ZHUANG K W, et al. Polymer derived ZrO2 reinforced SiC-ZrB2 polycrystalline fiber[J]. J Eur Ceram Soc, 2022, 42(9): 3730-3737.
[63] [63] JOO Y J, KIM C J, CHO K Y. Facile synthesis and morphological study of Si-Zr-C-O fiber felts with high-thermal resistance[J]. Ceram Int, 2019, 45(13): 16008-16014.
[64] [64] BAE S G, OH M, LEE Y, et al. Fabrication and high-temperature performance evaluation of silicon carbide-Hafnium carbide nanocomposite fiber[J]. Ceram Int, 2022, 48(9): 13295-13303.
[66] [66] XIE Z F, CAO S W, WANG J, et al. Engineering of silicon-based ceramic fibers: Novel SiTaC(O) ceramic fibers prepared from polytantalosilane[J]. Mater Sci Eng A, 2010, 527(26): 7086-7091.
[70] [70] YANG D X, SONG Y C, YU Y X, et al. Fabrication of SiC fibres from yttrium-containing polycarbosilane[J]. Trans Nonferrous Met Soc China, 2012, 22(4): 879-886.
[71] [71] YANG D X, YU Y X, SAN H S, et al. Synthesis of polyyttriocarbosilane and its conversion to yttrium-containing ceramic[J]. J Inorg Organomet Polym Mater, 2012, 22(4): 731-736.
[72] [72] JI X Y, SHAO C W, WANG H, et al. Curing green fibres infusible by electron beam irradiation for the preparation of SiBNC ceramic fibres[J]. Ceram Int, 2017, 43(14): 11218-11224.
[73] [73] ZHANG C Y, HAN K Q, LIU Y, et al. A novel high yield polyborosilazane precursor for SiBNC ceramic fibers[J]. Ceram Int, 2017, 43(13): 10576-10580.
[75] [75] ISHIKAWA T. Advances in inorganic fibers[M]//Polymeric and Inorganic Fibers. Berlin/Heidelberg: Springer-Verlag, 2005: 109-144.
[76] [76] ISHIKAWA T, KAJII S, MATSUNAGA K, et al. A tough, thermally conductive silicon carbide composite with high strength up to 1600 degreesC in air[J]. Science, 1998, 282(5392): 1295-1297.
[77] [77] CAO F, KIM D P, LI X D, et al. Synthesis of polyaluminocarbosilane and reaction mechanism study[J]. J Appl Polym Sci, 2002, 85(13): 2787-2792.
[78] [78] CAO F, LI X D, PENG P, et al. Structural evolution and associated properties on conversion from Si-C-O-Al ceramic fibers to Si-C-Al fibers by sintering[J]. J Mater Chem, 2002, 12(3): 606-610.
[79] [79] CAO F, LI X D, WANG W, et al. Preparation of high-temperature resistant SiC fibre with low content of oxygen and free carbon[J]. Adv Compos Lett, 2002, 11(2): 61-65.
[82] [82] YU Y X, LI X D, CAO F. Synthesis and characterization of polyaluminocarbosilane[J]. J Mater Sci, 2005, 40(8): 2093-2095.
[85] [85] LI X D, EDIRISINGHE M J. Structural investigation of Si-Al-C-O precursors and their pyrolysis products in nitrogen[J]. Proc R Soc Lond A: Math Phys Eng Sci, 2003, 459(2039): 2731-2747.
[87] [87] HE G M, CHEN J X, CHEN L F, et al. Method for preparing polyaluminocarbosilane[J]. J Appl Polym Sci, 2009, 113(6): 3725-3731.
[90] [90] XIE Z F, GOU Y Z. Polyaluminocarbosilane as precursor for aluminum-containing SiC fiber from oxygen-free sources[J]. Ceram Int, 2016, 42(8): 10439-10443.
[91] [91] SCHAWALLER D, CLAU B, BUCHMEISER M R. Ceramic filament fibers-A review[J]. Macromol Mater Eng, 2012, 297(6): 502-522.
[92] [92] SORAR G D, MERCADINI M, MASCHIO R D, et al. Si-Al-O-N fibers from polymeric precursor: synthesis, structural, and mechanical characterization[J]. J Am Ceram Soc, 1993, 76(10): 2595-2600.
[93] [93] SORAR G D, SGLAVO V M, VULCAN F, et al. Fabrication and characterization of β-SiAlON components from polymeric precursors[J]. MRS Online Proc Libr, 1992, 287(1): 245-250.
[94] [94] SORAR G D, RAVAGNI A, CAMPOSTRINI R, et al. Synthesis and characterization of β’‐SiAlON ceramics from organosilicon polymers[J]. J Am Ceram Soc, 1991, 74(9): 2220-2223.
[95] [95] BABONNEAU F, SORAR G D, THORNE K J, et al. Chemical characterization of Si‐Al‐C‐O precursor and its pyrolysis[J]. J Am Ceram Soc, 1991, 74(7): 1725-1728.
[97] [97] ISHIKAWA T. SiC polycrystalline fibre and its fibre-bonded ceramic[J]. Ann De Chimie Sci Des Matériaux, 2000, 25(7): 517-522.
[99] [99] YU Y X, LI X D, CAO F, et al. Synthesis and characterization of polyaluminocarbosilane as SiC ceramic precursor[J]. Trans Nonferrous Met Soc China, 2004, 14(4): 641-644.
[100] [100] YU Y X, LI X D, CAO F. A near-stoichiometric SiC-based fibre obtained from a polyaluminocarbosilane precursor[J]. Adv Compos Lett, 2004, 13(5): 245-249.
[101] [101] YU Y X. Fabrication and properties of aluminum-containing silicon carbide fibres[J]. Adv Compos Lett, 2007, 16(2):65-70.
[102] [102] YU Y X, TAI J H, TANG X Y, et al. Continuous Si-C-O-Al fiber derived from aluminum-containing polycarbosilane precursor[J]. Compos Part A: Appl Sci Manuf, 2008, 39(7): 1101-1105.
[103] [103] YU Y X, TANG X Y, LI X D. Characterization and microstructural evolution of SiC(OAl) fibers to SiC(Al) fibers derived from aluminum-containing polycarbosilane[J]. Compos Sci Technol, 2008, 68(7/8): 1697-1703.
[105] [105] ZHENG C M, LI X D, YU Y X, et al. Conversion of polyaluminocarbosilane(PACS) to Si-Al-C- (O) fibers: evolutions and effect of oxygen[J]. Trans Nonferrous Met Soc China, 2006, 16(2): 254-258.
[109] [109] YANG J M, CHENG X, YU Y X, et al. Quantitative determinations in the molecular structures of polyaluminocarbosilane[J]. Polymer, 2011, 52(17): 3811-3818.
[111] [111] GOU Y Z, WANG H, JIAN K, et al. Facile synthesis of melt-spinnable polyaluminocarbosilane using low-softening-point polycarbosilane for Si-C-Al-O fibers[J]. J Mater Sci, 2016, 51(17): 8240-8249.
[112] [112] SHIN D G, KONG E B, RIU D H, et al. Dense polycrystalline SiC fiber derived from aluminum-doped polycarbosilane by one-pot synthesis[J]. J Korean Ceram Soc, 2007, 44(7): 393-402.
[113] [113] SHIN D G, KONG E B, CHO K Y, et al. Nano-structure control of SiC hollow fiber prepared from polycarbosilane[J]. J Korean Ceram Soc, 2013, 50(4): 301-307.
[116] [116] CHEN Y, YU Y X, SAN H S, et al. Fabrication of aluminum-containing silicon carbide fibers from electrospinning[J]. Adv Mater Res, 2012, 562-564: 427-430.
[117] [117] YU Y X, CHEN Y, AN L N. Flexible hydrophobic and lipophilic aluminum-doped silicon carbide fibrous mats synthesized by electrospinning polyaluminocarbosilane[J]. Int J Appl Ceram Technol, 2014, 11(4): 699-705.
[118] [118] LUO Y G, ZHEN X L, PEI X L, et al. Preparation of hollow SiC ceramic fibre from polycarbosilane fibre by diffusion-controlled cross-linking method[J]. Adv Appl Ceram, 2020, 119(3): 166-173.
[121] [121] ZHEN X L, PEI X L, WANG Y F, et al. Crosslinking kinetics of polycarbosilane precursor in ozone atmosphere and the formation mechanism of continuous hollow SiC fiber[J]. J Eur Ceram Soc, 2019, 39(6): 2028-2035.
[122] [122] JOO Y J, KHISHIGBAYAR K E, CHO K Y, et al. Reduced pressure curing on polycarbosilane precursor for synthesis of silicon carbide fiber[J]. Fiber Polym (in Chinese), 2018, 19(9): 1806-1812.
[125] [125] HONG J, CHO K Y, SHIN D G, et al. Low-temperature chemical vapour curing using iodine for fabrication of continuous silicon carbide fibres from low-molecular-weight polycarbosilane[J]. J Mater Chem A, 2014, 2(8): 2781-2793.
[126] [126] HONG J, CHO K Y, SHIN D G, et al. Iodine diffusion during iodine- vapor curing and its effects on the morphology of polycarbosilane/ silicon carbide fibers[J]. J Appl Polym Sci, 2015, 132(47): 42687.
[128] [128] ISHIKAWA T, ODA H. Defect control of SiC polycrystalline fiber synthesized from poly-aluminocarbosilane[J]. J Eur Ceram Soc, 2016, 36(15): 3657-3662.
[130] [130] ZHENG C M, LI X D, YU Y X, et al. Effect of oxygen on the mechanical properties of polymer-derived Si-Al-C-O Fibers[J]. Key Eng Mater, 2007, 336-338: 1287-1290.
[131] [131] ISHIKAWA T, ODA H. Structural control aiming for high-performance SiC polycrystalline Fiber[J]. J Korean Ceram Soc, 2016, 53(6): 615-621.
[132] [132] CHEN L F, ZHANG L, CAI Z H, et al. Effects of oxidation curing and sintering additives on the formation of polymer-derived near-stoichiometric silicon carbide fibers[J]. J Am Ceram Soc, 2008, 91(2): 428-436.
[135] [135] ISHIKAWA T, SUWA K, USUKAWA R. Progress in polymer‐derived SiC‐based fibers: Improvement of surface roughness[C] // Proceedings of the 42nd International Conference on Advanced Ceramics and Composites: Ceramic Engineering and Science Proceedings Volume 39, Issue 3. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019: 1-13.
[136] [136] ISHIKAWA T, ODA H. Defect control of SiC polycrystalline fiber aiming for higher strength[J]. Advanced Processing and Manufacturing Technologies for Nanostructured and Multifunctional Materials III: Ceramic Engineering and Science Proceedings V, 2017, 37: 37-47.
[137] [137] USUKAWA R, ISHIKAWA T. High-performance SiC-polycrystalline fiber with smooth surface[J]. Ceramics, 2018, 1(1): 165-174.
[138] [138] USUKAWA R, ISHIKAWA T. Controlling factors for creating dense SiC-polycrystalline fiber[C] // Proceedings of the 12th Pacific Rim Conference on Ceramic and Glass Technology: Ceramic Transactions. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018, 264: 9-21.
Get Citation
Copy Citation Text
LI Xiaohong, ZHANG Xiao, ZHANG Mengna, LU Junchong, LUO Xiaoyu, LI Jinxia, CHEN Jianjun. Advanced in Preparation of Polymer Derived Al-Containing Silicon Carbide Ceramic Fibers[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1595
Category:
Received: Feb. 1, 2023
Accepted: --
Published Online: Aug. 13, 2023
The Author Email: Xiaohong LI (2825321520@qq.com)
CSTR:32186.14.