International Journal of Extreme Manufacturing, Volume. 6, Issue 6, 62001(2024)
Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications
[1] [1] Zhao J B, Hu N, Wu J Y, Li W X, Zhu Z J, Wang M F, Zheng Y J and Dai H J 2022 A review of piezoelectric metamaterials for underwater equipment Front. Phys.10 1068838
[2] [2] Birjis Y, Swaminathan S, Nazemi H, Raj G C A, Munirathinam P, Abu-Libdeh A and Emadi A 2022 Piezoelectric micromachined ultrasonic transducers (PMUTs): performance metrics, advancements, and applications Sensors22 9151
[3] [3] Jung J, Lee W, Kang W, Shin E, Ryu J and Choi H 2017 Review of piezoelectric micromachined ultrasonic transducers and their applications J. Micromech. Microeng.27 113001
[4] [4] Fu Y Q et al 2017 Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications Prog. Mater. Sci.89 31–91
[5] [5] Murayama R, Wang B J, Shindou K and Katsunaga K 2020 Study of an ultrasonic probe installed into a small diameter-pipe using an electromagnetic acoustic transducer Engineering12 549–62
[6] [6] Allik H, Webman K M and Hunt J T 1974 Vibrational response of sonar transducers using piezoelectric finite elements J. Acoust. Soc. Am.56 1782–91
[7] [7] Thompson R B 1973 A model for the electromagnetic generation and detection of Rayleigh and lamb waves IEEE Trans. Sonics Ultrason.20 340–6
[8] [8] Mikhailov A V, Gobov Y L, Smorodinskii Y G and Shcherbinin S V 2015 An electromagnetic–acoustic transducer with pulsed biasing Russ. J. Nondestruct. Test.51 467–75
[9] [9] Sekhar M C, Veena E, Kumar N S, Naidu K C B, Mallikarjuna A and Basha D B 2022 A review on piezoelectric materials and their applications Cryst. Res. Technol.58 2200130
[10] [10] Belzberg M et al 2020 Minimally invasive therapeutic ultrasound: ultrasound-guided ultrasound ablation in neuro-oncology Ultrasonics108 106210
[11] [11] Lescrauwaet E, Vonck K, Sprengers M, Raedt R, Klooster D, Carrette E and Boon P 2022 Recent advances in the use of focused ultrasound as a treatment for epilepsy Front. Neurosci.16 886584
[12] [12] Baek H, Lockwood D, Mason E J, Obusez E, Poturalski M, Rammo R, Nagel S J and Jones S E 2022 Clinical intervention using focused ultrasound (FUS) stimulation of the brain in diverse neurological disorders Front. Neurol.13 880814
[13] [13] Gorick C M et al 2022 Applications of focused ultrasound-mediated blood-brain barrier opening Adv. Drug. Deliv. Rev.191 114583
[14] [14] Al-Jumaily A M, Liaquat H and Paul S 2024 Focused ultrasound for dermal applications Ultrasound Med. Biol.50 8–17
[15] [15] Elias W J et al 2016 A randomized trial of focused ultrasound thalamotomy for essential tremor New Engl. J. Med.375 730–9
[16] [16] Ren D Y, Li C Y, Shi J H and Chen R M 2022 A review of high-frequency ultrasonic transducers for photoacoustic imaging applications IEEE Trans. Ultrason. Ferroelectr. Freq. Control69 1848–58
[17] [17] Peng C, Wu H Y, Kim S, Dai X M and Jiang X N 2021 Recent advances in transducers for intravascular ultrasound (IVUS) imaging Sensors21 3540
[18] [18] Shung K K, Cannata J M and Zhou Q F 2007 Piezoelectric materials for high frequency medical imaging applications: a review J. Electroceram.19 141–7
[19] [19] Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J and Huang T J 2018 Acoustic tweezers for the life sciences Nat. Methods15 1021–8
[20] [20] Cummer S A, Christensen J and Al A 2016 Controlling sound with acoustic metamaterials Nat. Rev. Mater.1 16001
[21] [21] Quadri S A, Waqas M, Khan I, Khan M A, Suriya S S, Farooqui M and Fiani B 2018 High-intensity focused ultrasound: past, present, and future in neurosurgery Neurosurg. Focus44 E16
[22] [22] Elhelf I A S, Albahar H, Shah U, Oto A, Cressman E and Almekkawy M 2018 High intensity focused ultrasound: the fundamentals, clinical applications and research trends Diagn. Int. Imaging99 349–59
[23] [23] Jiang X X, Savchenko O, Li Y F, Qi S A, Yang T L, Zhang W and Chen J 2019 A review of low-intensity pulsed ultrasound for therapeutic applications IEEE Trans. Biomed. Eng.66 2704–18
[24] [24] Yu K, Niu X D and He B 2020 Neuromodulation management of chronic neuropathic pain in the central nervous system Adv. Funct. Mater.30 1908999
[25] [25] Meng Y, Hynynen K and Lipsman N 2021 Applications of focused ultrasound in the brain: from thermoablation to drug delivery Nat. Rev. Neurol.17 7–22
[26] [26] Bachu V S, Kedda J, Suk I, Green J J and Tyler B 2021 High-intensity focused ultrasound: a review of mechanisms and clinical applications Ann. Biomed. Eng.49 1975–91
[27] [27] Javid A, Ilham S and Kiani M 2023 A review of ultrasound neuromodulation technologies IEEE Trans. Biomed. Circuits Syst.17 1084–96
[28] [28] Sugioka K 2019 Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review Int. J. Extrem. Manuf.1 012003
[29] [29] Wang J S, Fang F Z, An H J, Wu S, Qi H M, Cai Y and Guo G Y 2023 Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales Int. J. Extrem. Manuf.5 012005
[30] [30] Hasan M, Zhao J W and Jiang Z Y 2019 Micromanufacturing of composite materials: a review Int. J. Extrem. Manuf.1 012004
[31] [31] Gao W Y, Lei M W, Li B H, Li G, Li K, Feng Q L and Wang J L 2020 Investigations on the laser cutting of LiNbO3Optik201 163508
[32] [32] Retz K, Kotopoulis S, Kiserud T, Matre K, Eide G E and Sande R 2017 Measured acoustic intensities for clinical diagnostic ultrasound transducers and correlation with thermal index Ultrasound Obstet Gynecol.50 236–41
[33] [33] Rumack C M, Wilson S R and Charboneau J W 2007 Diagnostic Ultrasound (Peoples Military Medical Press)
[34] [34] Redford D T 2006 Understanding ultrasound physics Anesthesia Analgesia102 337
[35] [35] von Ramm O T and Smith S W 1983 Beam steering with linear arrays IEEE Trans. Biomed. Eng.30 438–52
[36] [36] Choi E and Roh Y 2017 Optimal design of a concave annular high intensity focused ultrasound transducer for medical treatment Sens. Actuators A 263 91–101
[37] [37] Lin Z, Guo X S, Tu J, Cheng J C, Wu J R, Huang P T and Zhang D 2015 A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures Appl. Phys. Lett.107 113505
[38] [38] Li F Q et al 2013 Sub-wavelength ultrasonic therapy using a spherical cavity transducer with open ends Appl. Phys. Lett.102 204102
[39] [39] Shung K K 2011 Diagnostic ultrasound: past, present, and future J. Med. Biol. Eng.31 371–4
[40] [40] Quarato C M I et al 2023 A review on biological effects of ultrasounds: key messages for clinicians Diagnostics13 855
[41] [41] Fry W J and Fry R B 1954 Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes—theory J. Acoust. Soc. Am.26 294–310
[42] [42] Nowicki A 2020 Safety of ultrasonic examinations; thermal and mechanical indices Med. Ultrasonogr.22 203–10
[43] [43] Humphrey V F 2007 Ultrasound and matter-physical interactions Prog. Biophys. Mol. Biol.93 195–211
[44] [44] Song P F, Andre M, Chitnis P, Xu S, Croy T, Wear K and Sikdar S 2023 Clinical, safety and engineering perspectives on wearable ultrasound technology: a review IEEE Trans. Ultrason. Ferroelectr. Freq. Control71 730–44
[45] [45] Dalecki D 2004 Mechanical bioeffects of ultrasound Annu. Rev. Biomed. Eng.6 229–48
[46] [46] Holland C K and Apfel R E 1989 An improved theory for the prediction of microcavitation thresholds IEEE Trans. Ultrason. Ferroelectr. Freq. Control36 204–8
[47] [47] Rathod V T 2020 A review of acoustic impedance matching techniques for piezoelectric sensors and transducers Sensors20 4051
[48] [48] Lee W and Roh Y 2017 Ultrasonic transducers for medical diagnostic imaging Biomed. Eng. Lett.7 91–97
[49] [49] Hao J G, Li W, Zhai J W and Chen H 2019 Progress in high-strain perovskite piezoelectric ceramics Mater. Sci. Eng.135 1–57
[50] [50] Low T S and Guo W 1995 Modeling of a three-layer piezoelectric bimorph beam with hysteresis J. Microelectromech. Syst.4 230–7
[51] [51] Rdel J, Jo W, Seifert K T P, Anton E M, Granzow T and Damjanovic D 2009 Perspective on the development of lead-free piezoceramics J. Am. Ceram. Soc.92 1153–77
[52] [52] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Nakamura M 2004 Lead-free piezoceramics Nature432 84–87
[53] [53] Karaki T, Yan K, Miyamoto T and Adachi M 2007 Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 Nano-powder Jpn. J. Appl. Phys.46 L97
[54] [54] Liu W F and Ren X B 2009 Large piezoelectric effect in Pb-free ceramics Phys. Rev. Lett.103 257602
[55] [55] Su M, Xia X X, Liu B Q, Zhang Z Q, Liu R, Cai F Y, Qiu W B and Sun L 2021 High frequency focal transducer with a Fresnel zone plate for intravascular ultrasound Appl. Phys. Lett.119 143702
[56] [56] Butt Z, Pasha R A, Qayyum F, Anjum Z, Ahmad N and Elahi H 2016 Generation of electrical energy using lead zirconate titanate (PZT-5A) piezoelectric material: analytical, numerical and experimental verifications J. Mech. Sci. Technol.30 3553–8
[57] [57] Tiefensee F, Becker-Willinger C, Heppe G, Herbeck-Engel P and Jakob A 2010 Nanocomposite cerium oxide polymer matching layers with adjustable acoustic impedance between 4 MRayl and 7 MRayl Ultrasonics50 363–6
[58] [58] Kawai H 1969 The piezoelectricity of poly (vinylidene Fluoride) Jpn. J. Appl. Phys.8 975
[59] [59] Sappati K K and Bhadra S 2018 Piezoelectric polymer and paper substrates: a review Sensors18 3605
[60] [60] Gomes J, Serrado Nunes J, Sencadas V and Lanceros-Mndez S 2010 Influence of the -phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride) Smart Mater. Struct.19 065010
[61] [61] Soin N et al 2014 Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications Energy Environ. Sci.7 1670–9
[62] [62] Newnham R E, Skinner D P and Cross L E 1978 Connectivity and piezoelectric-pyroelectric composites Mater. Res. Bull.13 525–36
[63] [63] Hu H J et al 2023 A wearable cardiac ultrasound imager Nature613 667–75
[64] [64] Lin M Y et al 2024 A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects Nat. Biotechnol.42 448–57
[65] [65] Hu H J et al 2023 Stretchable ultrasonic arrays for the three-dimensional mapping of the modulus of deep tissue Nat. Biomed. Eng.7 1321–34
[66] [66] Wang C H et al 2018 Monitoring of the central blood pressure waveform via a conformal ultrasonic device Nat. Biomed. Eng.2 687–95
[67] [67] Wang C H et al 2021 Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays Nat. Biomed. Eng.5 749–58
[68] [68] Lin M Y, Hu H J, Zhou S and Xu S 2022 Soft wearable devices for deep-tissue sensing Nat. Rev. Mater.7 850–69
[69] [69] Kabakov P, Kim T, Cheng Z X, Jiang X N and Zhang S J 2023 The versatility of piezoelectric composites Annu. Rev. Mater. Res.53 165–93
[70] [70] Barrow D A, Petroff T E, Tandon R P and Sayer M 1997 Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process J. Appl. Phys.81 876–81
[71] [71] Ruan T, Wang Q, Hu Z Y, Xu Q D, Xi Y, Li L X, Yang B and Liu J Q 2023 Multifunctional high-density ultrasonic microsensor for ranging and 2D imaging Appl. Phys. Lett.123 063501
[72] [72] Wang Q, Ruan T, Xu Q D, Yang B and Liu J Q 2021 Wearable multifunctional piezoelectric MEMS device for motion monitoring, health warning, and earphone Nano Energy89 106324
[73] [73] Ti J M, Li J H, Fan Q Q, Ren W, Yu Q and Wang C H 2023 Magnetron sputtering of ZnO thick film for high frequency focused ultrasonic transducer J. Alloys Compd.933 167764
[74] [74] Wu S, Liu K F, Wang W J, Li W, Wu T, Yang H and Li X X 2023 Aluminum nitride piezoelectric micromachined ultrasound transducer arrays for non-invasive monitoring of radial artery stiffness Micromachines14 539
[75] [75] Cannata J M, Ritter T A, Chen W H, Silverman R H and Shung K K 2003 Design of efficient, broadband single-element (20–80 MHz) ultrasonic transducers for medical imaging applications IEEE Trans. Ultrason. Ferroelectr. Freq. Control50 1548–57
[76] [76] Webster R A, Button T W, Meggs C, MacLennan D and Cochran S 2007. P3K-5 passive materials for high frequency ultrasound components Proceedings of 2007 IEEE Ultrasonics Symposium Proceedings (IEEE) pp 1925–8
[77] [77] Nicolaides K, Nortman L and Tapson J 2010 The effect of backing material on the transmitting response level and bandwidth of a wideband underwater transmitting transducer using 1–3 piezocomposite material Phys. Proc.3 1041–5
[78] [78] Manh T, Nguyen A T T, Johansen T F and Hoff L 2014 Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers Ultrasonics54 614–20
[79] [79] Manh T, Jensen G U, Johansen T F and Hoff L 2013 Microfabricated 1–3 composite acoustic matching layers for 15 MHz transducers Ultrasonics53 1141–9
[80] [80] Manh T, Jensen G U, Johansen T F and Hoff L 2012. Modeling and characterization of a silicon-epoxy 2–2 composite material Proceedings of 2012 IEEE International Ultrasonics Symposium (IEEE) pp 2234–7
[81] [81] Zhang S, Yin L L and Fang N 2009 Focusing ultrasound with an acoustic metamaterial network Phys. Rev. Lett.102 194301
[82] [82] Kaina N, Lemoult F, Fink M and Lerosey G 2015 Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials Nature525 77–81
[83] [83] Fang H J, Chen Y, Wong C M, Qiu W B, Chan H L W, Dai J Y, Li Q and Yan Q F 2016 Anodic aluminum oxide-epoxy composite acoustic matching layers for ultrasonic transducer application Ultrasonics70 29–33
[84] [84] Fei C L, Chiu C T, Chen X Y, Chen Z Y, Ma J G, Zhu B P, Shung K K and Zhou Q F 2016 Ultrahigh frequency (100 MHz-300 MHz) ultrasonic transducers for optical resolution medical imagining Sci. Rep.6 28360
[85] [85] Goat C A and Whatmore R W 1999 The effect of grinding conditions on lead zirconate titanate machinability J. Eur. Ceram. Soc.19 1311–3
[86] [86] Liu J H, Chen S Y and Li P C 2009 A single-element transducer with nonuniform thickness for high-frequency broadband applications IEEE Trans. Ultrason. Ferroelectr. Freq. Control56 379–86
[87] [87] Kim J and Kim M 2022 Focal position control of ultrasonic transducer made of plano-concave form piezoelectric vibrator Ultrasonics121 106668
[88] [88] Lu H T et al 2023 3D printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation Nat. Commun.14 2418
[89] [89] Tang Y K and Kim E S 2022 Simple sacrificial-layer-free microfabrication processes for air-cavity Fresnel acoustic lenses (ACFALs) with improved focusing performance Microsyst. Nanoeng.8 75
[90] [90] Li Z X, Yang S H, Wang D F, Shan H, Chen D D, Fei C L, Xiao M and Yang Y T 2021 Focus of ultrasonic underwater sound with 3D printed phononic crystal Appl. Phys. Lett.119 073501
[91] [91] Chen Z Y, Qian X J, Song X, Jiang Q G, Huang R J, Yang Y, Li R Z, Shung K, Chen Y and Zhou Q F 2019 Three-dimensional printed piezoelectric array for improving acoustic field and spatial resolution in medical ultrasonic imaging Micromachines10 170
[92] [92] Chen J, Dai J Y, Zhang C, Zhang Z T and Feng G P 2012 Broadband focusing ultrasonic transducers based on dimpled LiNbO3 plate with inversion layer IEEE Trans. Ultrason. Ferroelectr. Freq. Control59 2797–802
[93] [93] Zhu B P, Fei C L, Wang C, Zhu Y H, Yang X F, Zheng H R, Zhou Q F and Shung K K 2017 Self-focused AlScN film ultrasound transducer for individual cell manipulation ACS Sens.2 172–7
[94] [94] Zhang D C, Wang Z Y, Cheng Z W, Zhang W Y, Yang F and Yang S H 2021 An ellipsoidal focused ultrasound transducer for extend-focus photoacoustic microscopy IEEE Trans. Biomed. Eng.68 3748–52
[95] [95] Chen Z Y et al 2016 3D printing of piezoelectric element for energy focusing and ultrasonic sensing Nano Energy27 78–86
[96] [96] Yao D S et al 2019 Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites Adv. Funct. Mater.29 1903866
[97] [97] Melde K, Mark A G, Qiu T and Fischer P 2016 Holograms for acoustics Nature537 518–22
[98] [98] Tarraz-Serrano D, Castieira-Ibez S, Minin O V, Candelas P, Rubio C and Minin I V 2019 Design of acoustical Bessel-like beam formation by a pupil masked soret zone plate lens Sensors19 378
[99] [99] Liao G X, Luan C C, Wang Z W, Liu J P, Yao X H and Fu J Z 2021 Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications Adv. Mater. Technol.6 2000787
[100] [100] Chen J, Xiao J, Lisevych D, Shakouri A and Fan Z 2018 Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens Nat. Commun.9 4920
[101] [101] Cai Z R, Zhao S D, Huang Z D, Li Z, Su M, Zhang Z Y, Zhao Z P, Hu X T, Wang Y S and Song Y L 2019 Bubble architectures for locally resonant acoustic metamaterials Adv. Funct. Mater.29 1906984
[102] [102] Datta S, Tamburrino A and Udpa L 2022 Gradient index metasurface lens for microwave imaging Sensors22 8319
[103] [103] Liu H J, Zheng Y, Lu Y, Kang Q L, Guo K and Guo Z Y 2021 Helmholtz-resonator metasurface based high-efficiency acoustic focusing lens Ann. Phys.533 2100218
[104] [104] Liu J F, Foiret J, Stephens D N, Le Baron O and Ferrara K W 2016 Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia Phys. Med. Biol.61 5275–96
[105] [105] Ghanem M A, Maxwell A D, Kreider W, Cunitz B W, Khokhlova V A, Sapozhnikov O A and Bailey M R 2018 Field characterization and compensation of vibrational nonuniformity for a 256-element focused ultrasound phased array IEEE Trans. Ultrason. Ferroelectr. Freq. Control65 1618–30
[106] [106] Foster F S, Larson J D, Mason M K, Shoup T S, Nelson G and Yoshida H 1989 Development of a 12 element annular array transducer for realtime ultrasound imaging Ultrasound Med. Biol.15 649–59
[107] [107] Chen J, Lam K H, Dai J Y, Zhang C, Zhang Z T and Feng G P 2012 35 MHz PMN-PT single crystal annular array ultrasonic transducer Integr. Ferroelectr.139 116–22
[108] [108] Snook K A, Hu C H, Shrout T R and Shung K K 2006 High-frequency ultrasound annular-array imaging. Part I: array design and fabrication IEEE Trans. Ultrason. Ferroelectr. Freq. Control53 300–8
[109] [109] Lei Z H, Xie Y J, Chen Y, Yuan M D, Zeng L M, Ji X R and Wu D W 2020 Fabrication of high-frequency ultrasonic array transducers with outstanding performance based on laser techniques Proceedings of 2020 IEEE International Ultrasonics Symposium (IUS) (IEEE)
[110] [110] Liu X Q, Chen Q D, Guan K M, Ma Z C, Yu Y H, Li Q K, Tian Z N and Sun H B 2017 Dry-etching-assisted femtosecond laser machining Laser Photonics Rev.11 1600115
[111] [111] Brown J A, Demore C E M and Lockwood G R 2004 Design and fabrication of annular arrays for high-frequency ultrasound IEEE Trans. Ultrason. Ferroelectr. Freq. Control51 1010–7
[112] [112] Sammoura F, Akhari S, Aqab N, Mahmoud M and Lin L W 2014. Multiple electrode piezoelectric micromachined ultrasonic transducers Proc. 2014 IEEE Int. Ultrasonics Symposium (IEEE) pp 305–8
[113] [113] Ketterling J A, Aristizabal O, Turnbull D H and Lizzi F L 2005 Design and fabrication of a 40-MHz annular array transducer IEEE Trans. Ultrason. Ferroelectr. Freq. Control52 672–81
[114] [114] Gottlieb E J, Cannata J M, Hu C H and Shung K K 2005 High frequency copolymer annular array ultrasound transducer fabrication technology Proceedings of 2005 IEEE Ultrasonics Symposium (IEEE) pp 121–4
[115] [115] Pashaei V, Dehghanzadeh P, Enwia G, Bayat M, Majerus S J A and Mandal S 2020 Flexible body-conformal ultrasound patches for image-guided neuromodulation IEEE Trans. Biomed. Circuits Syst.14 305–18
[116] [116] Ma Y J et al 2020 Flexible hybrid electronics for digital healthcare Adv. Mater.32 1902062
[117] [117] Hur S, Choi H, Yoon G H, Kim N W, Lee D G and Kim Y T 2022 Planar ultrasonic transducer based on a metasurface piezoelectric ring array for subwavelength acoustic focusing in water Sci. Rep.12 1485
[118] [118] Wang X Y, Wu H D, Zhang X D, Zhang D, Gong X and Zhang D 2018 Investigation of a multi-element focused air-coupled transducer AIP Adv.8 095010
[119] [119] Jian X H, Liu P B, Li Z J, Lv J B, Yang C, Li P Y and Cui Y Y 2019 Development of self-focusing piezoelectric composite ultrasound transducer using laser engraving technology IEEE Trans. Ultrason. Ferroelectr. Freq. Control66 1866–73
[120] [120] Li Z X, Zhao J X, Hou C X, Fei C L, Zheng C X, Lou L F, Chen D D, Li D and Yang Y T 2022 High-frequency self-focusing ultrasonic transducer with piezoelectric metamaterial IEEE Electron Device Lett.43 946–9
[121] [121] Sun Y Q, Gao X M, Wang H, Chen Z G and Yang Z T 2018 A wideband ultrasonic energy harvester using 1–3 piezoelectric composites with non-uniform thickness Appl. Phys. Lett.112 043903
[122] [122] Hou C X et al 2023 Active acoustic field modulation of ultrasonic transducers with flexible composites Commun. Phys.6 252
[123] [123] Lee J, Jang J H and Chang J H 2017 Oblong-shaped-focused transducers for intravascular ultrasound imaging IEEE Trans. Biomed. Eng.64 671–80
[124] [124] Chen G S, Liu H C, Lin Y C and Lin Y L 2013 Experimental analysis of 1–3 piezocomposites for high-intensity focused ultrasound transducer applications IEEE Trans. Biomed. Eng.60 128–34
[125] [125] Li G F et al 2018 Imaging-guided dual-target neuromodulation of the mouse brain using array ultrasound IEEE Trans. Ultrason. Ferroelectr. Freq. Control65 1583–9
[126] [126] Tipsawat P, Ilham S J, Yang J I, Kashani Z, Kiani M and Trolier-Mckinstry S 2022 32 element piezoelectric micromachined ultrasound transducer (PMUT) phased array for neuromodulation IEEE Open J. Ultrason. Ferroelectr. Freq. Control2 184–93
[127] [127] Jiang L M, Chen H, Zeng Y S, Tan Z, Wu J G, Xing J and Zhu J G 2022 Potassium sodium niobate-based lead-free high-frequency ultrasonic transducers for multifunctional acoustic tweezers ACS Appl. Mater. Interfaces14 30979–90
[128] [128] Yoon S, Williams J, Kang B J, Yoon C, Cabrera-Munoz N, Jeong J S, Lee S G, Shung K K and Kim H H 2015 Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging Sens. Actuators A 228 16–22
[129] [129] Fei C L, Yang Y H, Guo F F, Lin P F, Chen Q, Zhou Q F and Sun L 2018 PMN-PT single crystal ultrasonic transducer with half-concave geometric design for IVUS imaging IEEE Trans. Biomed. Eng.65 2087–92
[130] [130] Lee J, Moon J Y and Chang J H 2018 A 35 MHz/105 MHz dual-element focused transducer for intravascular ultrasound tissue imaging using the third harmonic Sensors18 2290
[131] [131] Fleischman A, Modi R, Nair A, Talman J, Lockwood G and Roy S 2003 Miniature high frequency focused ultrasonic transducers for minimally invasive imaging procedures Sens. Actuators A 103 76–82
[132] [132] Zhou Q F, Sharp C, Cannata J M, Shung K K, Feng G H and Kim E S 2007 Self-focused high frequency ultrasonic transducers based on ZnO piezoelectric films Appl. Phys. Lett.90 113502
[133] [133] Nguyen T P, Nguyen V T, Mondal S, Pham V H, Vu D D, Kim B G and Oh J 2020 Improved depth-of-field photoacoustic microscopy with a multifocal point transducer for biomedical imaging Sensors20 2020
[134] [134] Fang C, Hu H and Zou J 2020 A focused optically transparent PVDF transducer for photoacoustic microscopy IEEE Sens. J.20 2313–9
[135] [135] Park J et al 2021 Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer Proc. Natl Acad. Sci. USA118 e1920879118
[136] [136] Ter Haar G and Coussios C 2007 High intensity focused ultrasound: physical principles and devices Int. J. Hyperth.23 89–104
[137] [137] Lynn J G, Zwemer R L, Chick A J and Miller A E 1942 A new method for the generation and use of focused ultrasound in experimental biology J. Gen. Physiol.26 179–93
[138] [138] Wu F et al 2004 Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview Ultrason. Sonochem.11 149–54
[139] [139] Zippel D B and Papa M Z 2005 The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review Breast Cancer12 32–38
[140] [140] Clement G T, Sun J, Giesecke T and Hynynen K 2000 A hemisphere array for non-invasive ultrasound brain therapy and surgery Phys. Med. Biol.45 3707–19
[141] [141] Theis M et al 2023 Deep learning enables automated MRI-based estimation of uterine volume also in patients with uterine fibroids undergoing high-intensity focused ultrasound therapy Insights Imaging14 1
[142] [142] Scipione R, Anzidei M, Bazzocchi A, Gagliardo C, Catalano C and Napoli A 2018 HIFU for bone metastases and other musculoskeletal applications Semin. Intervent Radiol.35 261–7
[143] [143] Chen G S, Lin C Y, Jeong J S, Cannata J M, Lin W L, Chang H and Shung K K 2012 Design and characterization of dual-curvature 1.5-dimensional high-intensity focused ultrasound phased-array transducer IEEE Trans. Ultrason. Ferroelectr. Freq. Control59 150–5
[144] [144] Woo J and Roh Y 2019 Design and fabrication of an annular array high intensity focused ultrasound transducer with an optimal electrode pattern Sens. Actuators A 290 156–61
[145] [145] Karzova M M, Yuldashev P V, Khokhlova V A, Nartov F A, Morrison K P and Khokhlova T D 2021 Dual-use transducer for ultrasound imaging and pulsed focused ultrasound therapy IEEE Trans. Ultrason. Ferroelectr. Freq. Control68 2930–41
[146] [146] Kiani L 2023 Ultrasound ablation treatment for PD Nat. Rev. Neurol.19 197
[147] [147] Makin I R S, Mast T D, Faidi W, Runk M M, Barthe P G and Slayton M H 2005 Miniaturized ultrasound arrays for interstitial ablation and imaging Ultrasound Med. Biol.31 1539–50
[148] [148] Zhang M Z, Narumi R, Azuma T, Okita K and Takagi S 2021 Numerical study on sector-vortex phased irradiation method using annular array transducer in high-intensity focused ultrasound treatment Ultrasonics115 106464
[149] [149] Jeong J S, Cannata J M and Shung K K 2010 Dual-focus therapeutic ultrasound transducer for production of broad tissue lesions Ultrasound Med. Biol.36 1836–48
[150] [150] Ma J G, Guo S J, Wu D, Geng X C and Jiang X N 2013 Design, fabrication, and characterization of a single-aperture 1.5-MHz/3-MHz dual-frequency HIFU transducer IEEE Trans. Ultrason. Ferroelectr. Freq. Control60 1519–29
[151] [151] Park C Y, Kwon D S, Sung J H and Jeong J S 2017 Dual-frequency ultrasound transducer using inversion layer technique for therapeutic ultrasound surgery IEEE Sens. J.17 6859–66
[152] [152] Harvey E N 1929 The effect of high frequency sound waves on heart muscle and other irritable tissues Am. J. Physiol.91 284–90
[153] [153] Fry W J, Wulff V J, Tucker D and Fry F J 2005 Physical factors involved in ultrasonically induced changes in living systems: I. Identification of non-temperature effects J. Acoust. Soc. Am.22 867–76
[154] [154] Fry F J, Ades H W and Fry W J 1958 Production of reversible changes in the central nervous system by ultrasound Science127 83–84
[155] [155] Deffieux T, Wattiez N, Tanter M, Pouget P, Aubry J F and Younan Y 2015 Low intensity focused ultrasound modulates monkey visuomotor behavior J. Ther. Ultrasound3 O25
[156] [156] Legon W, Sato T F, Opitz A, Mueller J, Barbour A, Williams A and Tyler W J 2014 Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans Nat. Neurosci.17 322–9
[157] [157] Mehi E, Xu J M, Caler C J, Coulson N K, Moritz C T and Mourad P D 2014 Increased anatomical specificity of neuromodulation via modulated focused ultrasound PLoS One9 e86939
[158] [158] Qian X J, Lu G X, Thomas B B, Li R Z, Chen X Y, Shung K K, Humayun M and Zhou Q F 2022 Noninvasive ultrasound retinal stimulation for vision restoration at high spatiotemporal resolution BME Front2022 9829316
[159] [159] Lee J et al 2019 A MEMS ultrasound stimulation system for modulation of neural circuits with high spatial resolution in vitro Microsyst. Nanoeng.5 28
[160] [160] Yu Y Y, Zhang Z Q, Cai F Y, Su M, Jiang Q J, Zhou Q F, Humayun M S, Qiu W B and Zheng H R 2019 A novel racing array transducer for noninvasive ultrasonic retinal stimulation: a simulation study Sensors19 1825
[161] [161] Zhou H, Niu L L, Xia X X, Lin Z R, Liu X F, Su M, Guo R B, Meng L and Zheng H R 2019 Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson's disease IEEE Trans. Biomed. Eng.66 3006–13
[162] [162] Li G F et al 2019 Noninvasive ultrasonic neuromodulation in freely moving mice IEEE Trans. Biomed. Eng.66 217–24
[163] [163] Liu W, Zhu C L and Wu D W 2021 Flexible and stretchable ultrasonic transducer array conformed to complex surfaces IEEE Electron Device Lett.42 240–3
[164] [164] Wang S Y, Meng W L, Ren Z Y, Li B X, Zhu T J, Chen H, Wang Z, He B, Zhao D and Jiang H 2020 Ultrasonic neuromodulation and sonogenetics: a new era for neural modulation Front. Physiol.11 787
[165] [165] Liang L L, Sun C H, Zhang R T, Han S W, Wang J A, Ren N and Liu H 2021 Piezotronic effect determined neuron-like differentiation of adult stem cells driven by ultrasound Nano Energy90 106634
[166] [166] Costa T, Shi C, Tien K, Elloian J, Cardoso F A and Shepard K L 2021 An integrated 2D ultrasound phased array transmitter in CMOS with pixel pitch-matched beamforming IEEE Trans. Biomed. Circuits Syst.15 731–42
[167] [167] Hu Z T, Yang Y H, Xu L, Hao Y and Chen H 2022 Binary acoustic metasurfaces for dynamic focusing of transcranial ultrasound Front. Neurosci.16 984953
[168] [168] Maimbourg G, Houdouin A, Deffieux T, Tanter M and Aubry J F 2018 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers Phys. Med. Biol.63 025026
[169] [169] Maimbourg G, Houdouin A, Deffieux T, Tanter M and Aubry J F 2020 Steering capabilities of an acoustic lens for transcranial therapy: numerical and experimental studies IEEE Trans. Biomed. Eng.67 27–37
[170] [170] Jimnez-Gambn S, Jimnez N, Benlloch J M and Camarena F 2019 Holograms to focus arbitrary ultrasonic fields through the skull Phys. Rev. Appl.12 014016
[171] [171] Jimnez-Gambn S, Jimnez N and Camarena F 2020 Transcranial focusing of ultrasonic vortices by acoustic holograms Phys. Rev. Appl.14 054070
[172] [172] Naor O, Hertzberg Y, Zemel E, Kimmel E and Shoham S 2012 Towards multifocal ultrasonic neural stimulation II: design considerations for an acoustic retinal prosthesis J. Neural Eng.9 026006
[173] [173] Menz M, Oralkan , Khuri-Yakub P T and Baccus S A 2013 Precise neural stimulation in the retina using focused ultrasound J. Neurosci.33 4550–60
[174] [174] Menz M D, Ye P, Firouzi K, Nikoozadeh A, Pauly K B, Khuri-Yakub P and Baccus S A 2019 Radiation force as a physical mechanism for ultrasonic neurostimulation of the ex vivo retina J. Neurosci.39 6251–64
[175] [175] Gao M D et al 2017 Simulation study of an ultrasound retinal prosthesis with a novel contact-lens array for noninvasive retinal stimulation IEEE Trans. Neural Syst. Rehabil. Eng.25 1605–11
[176] [176] Xu C L, Lu G X, Kang H C, Humayun M S and Zhou Q F 2022 Design and simulation of a ring transducer array for ultrasound retinal stimulation Micromachines13 1536
[177] [177] Yoo S S, Bystritsky A, Lee J H, Zhang Y Z, Fischer K, Min B K, McDannold N J, Pascual-Leone A and Jolesz F A 2011 Focused ultrasound modulates region-specific brain activity Neuroimage56 1267–75
[178] [178] Kim C C, Kim Y, Jeong S H, Oh K H, Nam K T and Sun J J 2020 An implantable ionic wireless power transfer system facilitating electrosynthesis ACS Nano14 11743–52
[179] [179] Agarwal K, Jegadeesan R, Guo Y X and Thakor N V 2017 Wireless power transfer strategies for implantable bioelectronics IEEE Rev. Biomed. Eng.10 136–61
[180] [180] Mou X L and Sun H J 2015 Wireless power transfer: survey and roadmap Proc. IEEE 81st Vehicular Technology Conf. (VTC Spring) (IEEE) pp 1–5
[181] [181] Maleki T, Cao N, Song S H, Kao C, Ko S C and Ziaie B 2011 An ultrasonically powered implantable micro-oxygen generator (IMOG) IEEE Trans. Biomed. Eng.58 3104–11
[182] [182] Islam S and Kim A 2018 Ultrasonic energy harvesting scheme for implantable active stent Proc.2018 IEEE Int. Microwave Biomedical Conf. (IMBioC) (IEEE) pp 70–72
[183] [183] Shi Q F, Wang T and Lee C 2016 MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices Sci. Rep.6 24946
[184] [184] Yang Z T, Zeng D P, Wang H, Zhao C L and Tan J W 2015 Harvesting ultrasonic energy using 1–3 piezoelectric composites Smart Mater. Struct.24 075029
[185] [185] Jin P et al 2021 A flexible, stretchable system for simultaneous acoustic energy transfer and communication Sci. Adv.7 eabg2507
[186] [186] Sonmezoglu S, Fineman J R, Maltepe E and Maharbiz M M 2021 Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant Nat. Biotechnol.39 855–64
[187] [187] Jiang L M, Lu G X, Yang Y, Zeng Y S, Sun Y Z, Li R Z, Humayun M S, Chen Y and Zhou Q F 2021 Photoacoustic and piezo-ultrasound hybrid-induced energy transfer for 3D twining wireless multifunctional implants Energy Environ. Sci.14 1490–505
[188] [188] Hong Y et al 2021 A wood-templated unidirectional piezoceramic composite for transmuscular ultrasonic wireless power transfer Energy Environ. Sci.14 6574–85
[189] [189] Hinchet R, Yoon H J, Ryu H, Kim M K, Choi E K, Kim D S and Kim S W 2019 Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology Science365 491–4
[190] [190] Islam S, Oh E, Jun C, Kim J, Chang W S, Song S and Kim A 2023 Omni-directional ultrasonic powering via platonic solid receiver for mm-scale implantable devices ACS Mater. Lett.5 1876–85
[191] [191] Jiang L M, Lu G X, Yang Y, Xu Y, Qi F J, Li J P, Zhu B P and Chen Y 2021 Multichannel piezo-ultrasound implant with hybrid waterborne acoustic metastructure for selective wireless energy transfer at megahertz frequencies Adv. Mater.33 2104251
[192] [192] Yi X Y, Zheng W C, Cao H, Wang S G, Feng X L and Yang Z T 2021 Wireless power transmission for implantable medical devices using focused ultrasound and a miniaturized 1–3 piezoelectric composite receiving transducer IEEE Trans. Ultrason. Ferroelectr. Freq. Control68 3592–8
[193] [193] Jiang L M, Wu B, Wei X W, Lv X, Xue H Y, Lu G X, Zeng Y S, Xing J, Wu W J and Wu J G 2022 Flexible lead-free piezoelectric arrays for high-efficiency wireless ultrasonic energy transfer and communication Mater. Horiz.9 2180–90
[194] [194] Liu X Z et al 2022 An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer Matter5 4315–31
[195] [195] Zhang T et al 2022 Piezoelectric ultrasound energy–harvesting device for deep brain stimulation and analgesia applications Sci. Adv.8 eabk0159
[196] [196] Piech D K, Johnson B C, Shen K, Ghanbari M M, Li K Y, Neely R M, Kay J E, Carmena J M, Maharbiz M M and Muller R 2020 A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication Nat. Biomed. Eng.4 207–22
[197] [197] Jiang L M, Lu G X, Zeng Y S, Sun Y Z, Kang H C, Burford J, Gong C, Humayun M S, Chen Y and Zhou Q F 2022 Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses Nat. Commun.13 3853
[198] [198] Jiang L M et al 2019 Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application Adv. Funct. Mater.29 1902522
[199] [199] Ding X Y, Lin S C S, Kiraly B, Yue H J, Li S X, Chiang I K, Shi J J, Benkovic S J and Huang T J 2012 On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves Proc. Natl Acad. Sci. USA109 11105–9
[200] [200] Zeng Y S et al 2022 Manipulation and mechanical deformation of leukemia cells by high-frequency ultrasound single beam IEEE Trans. Ultrason. Ferroelectr. Freq. Control69 1889–97
[201] [201] Hwang J Y, Kim J, Park J M, Lee C, Jung H, Lee J and Shung K K 2016 Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics Sci. Rep.6 27238
[202] [202] Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B and Subramanian S 2015 Holographic acoustic elements for manipulation of levitated objects Nat. Commun.6 8661
[203] [203] Thomas L, Petersson F and Andreas N 2007 Chip integrated strategies for acoustic separation and manipulation of cells and particles Chem. Soc. Rev.36 492–506
[204] [204] Chen X Y, Lam K H, Chen R M, Chen Z Y, Yu P, Chen Z P, Shung K K and Zhou Q F 2017 An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer Biotechnol. Bioeng.114 2637–47
[205] [205] Fei C L, Hsu H S, Vafanejad A, Li Y, Lin P F, Li D, Yang Y T, Kim E, Shung K K and Zhou Q F 2017 Ultrahigh frequency ZnO silicon lens ultrasonic transducer for cell-size microparticle manipulation J. Alloys Compd.729 556–62
[206] [206] Zhen L Y, Liu Z D, Liu Z T, Wang Q, Liu J Q, Yao Z R and Yang B 2023 High-density flexible piezoelectric sensor array with double working modes IEEE Sens. J.5 5270–7
Get Citation
Copy Citation Text
Bai Xingyu, Wang Daixu, Zhen Liyun, Cui Meng, Liu Jingquan, Zhao Ning, Lee Chengkuo, Yang Bin. Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 62001
Category: Topical Review
Received: Feb. 28, 2024
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: