Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1917(2024)

Recent Development on Cathodes for Intermediate- and Low-Temperature Protonic Ceramic Fuel Cells

GONG Wenjie... XU Kang, XIA Jiaojiao, XU Yangseng and CHEN Yu* |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(175)

    [2] [2] BI L, BOULFRAD S, TRAVERSA E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides[J]. Chem Soc Rev, 2014, 43(24): 8255-8270.

    [3] [3] MOND L, LANGER C. A new form of gas battery[J]. Proc R Soc Lond, 1890, 46(280-285): 296-304.

    [4] [4] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.

    [5] [5] APPLEBY A. Fuel cell technology: Status and future prospects[J]. Energy, 1996, 21(7): 521-653.

    [6] [6] ALCAIDE F, CABOT P L, BRILLAS E. Fuel cells for chemicals and energy cogeneration[J]. J Power Sources, 2006, 153(1): 47-60.

    [7] [7] MCLEAN G. An assessment of alkaline fuel cell technology[J]. Int J Hydrog Energy, 2002, 27(5): 507-526.

    [8] [8] JAGUR-GRODZINSKI J. Polymeric materials for fuel cells: Concise review of recent studies[J]. Polym Adv Technol, 2007, 18(10): 785-799.

    [9] [9] D.E. EAPEN, S.R. SUSEENDIRAN, R. RENGASWAMY. 2. Phosphoric acid fuel cells (PAFCs)[J]. Energy, 1986, 11(1-2): 13-94.

    [10] [10] ZHANG H W, SHEN P K. Advances in the high performance polymer electrolyte membranes for fuel cells[J]. Chem Soc Rev, 2012, 41(6): 2382-2394.

    [11] [11] GASTEIGER H A, KOCHA S S, SOMPALLI B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl Catal B Environ, 2005, 56(1-2): 9-35.

    [12] [12] ANTOLINI E. The stability of molten carbonate fuel cell electrodes: A review of recent improvements[J]. Appl Energy, 2011, 88(12): 4274-4293.

    [13] [13] STAMBOULI A B, TRAVERSA E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy[J]. Renew Sustain Energy Rev, 2002, 6(5): 433-455.

    [14] [14] MINH N. Solid oxide fuel cell technology? features and applications[J]. Solid State Ion, 2004, 174(1-4): 271-277.

    [15] [15] DUAN C, HUANG J, SULLIVAN N, et al. Proton-conducting oxides for energy conversion and storage[J]. Applied Physics Reviews, 2020, 7(1): 011314.

    [16] [16] HAN M F, TANG X L, YIN H Y, et al. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs[J]. J Power Sources, 2007, 165(2): 757-763.

    [17] [17] STEVENSON J W, HASINSKA K, CANFIELD N L, et al. Influence of cobalt and iron additions on the electrical and thermal properties of (La, Sr)(Ga, Mg)O3-δ[J]. J Electrochem Soc, 2000, 147(9): 3213.

    [18] [18] CHEN Y B, ZHOU W, DING D, et al. Advances in cathode materials for solid oxide fuel cells: Complex oxides without alkaline earth metal elements[J]. Adv Energy Mater, 2015, 5(18): 1500537.

    [19] [19] DUAN C C, TONG J H, SHANG M, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures[J]. Science, 2015, 349(6254): 1321-1326.

    [20] [20] ZHANG Y, CHEN B, GUAN D Q, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591(7849): 246-251.

    [21] [21] ZHU F, HE F, LIU D L, et al. A surface reconfiguration of a perovskite air electrode enables an active and durable reversible protonic ceramic electrochemical cell[J]. Energy Storage Mater, 2022, 53: 754-762.

    [22] [22] HU T, XU Y S, XU K, et al. Visiting the roles of Sr- or Ca- doping on the oxygen reduction reaction activity and stability of a perovskite cathode for proton conducting solid oxide fuel cells[J]. SusMat, 2023, 3(1): 91-101.

    [23] [23] FABBRI E, PERGOLESI D, TRAVERSA E. Materials challenges toward proton-conducting oxide fuel cells: A critical review[J]. Chem Soc Rev, 2010, 39(11): 4355-4369.

    [24] [24] CAO J F, JI Y X, SHAO Z P. Perovskites for protonic ceramic fuel cells: A review[J]. Energy Environ Sci, 2022, 15(6): 2200-2232.

    [25] [25] ZHANG J, RICOTE S, HENDRIKSEN P V, et al. Advanced materials for thin-film solid oxide fuel cells: Recent progress and challenges in boosting the device performance at low temperatures[J]. Adv Funct Mater, 2022, 32(22): 2111205.

    [26] [26] WANG Q J, RICOTE S, CHEN M. Oxygen electrodes for protonic ceramic cells[J]. Electrochim Acta, 2023, 446: 142101.

    [27] [27] BIAN W J, WU W, WANG B M, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604(7906): 479-485.

    [28] [28] BHALLA A S, GUO R, ROY R. The perovskite structure-a review of its role in ceramic science and technology[J]. Mater Res Innov, 2000, 4(1): 3-26.

    [29] [29] SUNARSO J, BAUMANN S, SERRA J M, et al. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation[J]. J Membr Sci, 2008, 320(1-2): 13-41.

    [30] [30] SAMMELLS A, COOK R, WHITE J, et al. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells[J]. Solid State Ion, 1992, 52(1-3): 111-123.

    [31] [31] SUNARSO J, HASHIM S S, ZHU N, et al. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review[J]. Prog Energy Combust Sci, 2017, 61: 57-77.

    [32] [32] ROY R. Multiple ion substitution in the perovskite lattice[J]. J Am Ceram Soc, 1954, 37(12): 581-588.

    [33] [33] ZHAO F, LIU Q, WANG S W, et al. Infiltrated multiscale porous cathode for proton-conducting solid oxide fuel cells[J]. J Power Sources, 2011, 196(20): 8544-8548.

    [34] [34] SHAO Z P, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005): 170-173.

    [35] [35] YANG L, LIU Z, WANG S Z, et al. A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors[J]. J Power Sources, 2010, 195(2): 471-474.

    [36] [36] SONG Y F, CHEN Y B, WANG W, et al. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode[J]. Joule, 2019, 3(11): 2842-2853.

    [37] [37] YANG L, ZUO C D, WANG S Z, et al. A novel composite cathode for low-temperature SOFCs based on oxide proton conductors[J]. Adv Mater, 2008, 20(17): 3280-3283.

    [38] [38] SEONG A, JEONG D, KIM M, et al. Performance comparison of composite cathode: Mixed ionic and electronic conductor and triple ionic and electronic conductor with BaZr0.1Ce0.7Y0.1Yb0.1O3-δ for highly efficient protonic ceramic fuel cells[J]. J Power Sources, 2022, 530: 231241.

    [39] [39] TANNER C W, VIRKAR A V. Instability of BaCeO3 in ?H2O?-containing atmospheres[J]. J Electrochem Soc, 1996, 143(4): 1386-1389.

    [40] [40] SUN W P, YAN L T, LIN B, et al. High performance proton- conducting solid oxide fuel cells with a stable Sm0.5Sr0.5Co3-δ- Ce0.8Sm0.2O2-δ composite cathode[J]. J Power Sources, 2010, 195(10): 3155-3158.

    [41] [41] LU C, SHOLKLAPPER T Z, JACOBSON C P, et al. LSM-YSZ cathodes with reaction-infiltrated nanoparticles[J]. J Electrochem Soc, 2006, 153(6): A1115.

    [42] [42] JIANG S P. A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells[J]. Mater Sci Eng A, 2006, 418(1-2): 199-210.

    [43] [43] JIANG S P, WANG W. Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells[J]. Solid State Ion, 2005, 176(15-16): 1351-1357.

    [44] [44] CRACIUN R, PARK S, GORTE R J, et al. A novel method for preparing anode cermets for solid oxide fuel cells[J]. J Electrochem Soc, 1999, 146(11): 4019-4022.

    [45] [45] UCHIDA H, MOCHIZUKI N, WATANABE M. High-performance electrode for medium-temperature operating solid oxide fuel cells: Polarization property of ceria-based anode with highly dispersed ruthenium catalysts in gas[J]. J Electrochem Soc, 1996, 143(5): 1700-1704.

    [46] [46] WU T Z, ZHAO Y Q, PENG R R, et al. Nano-sized Sm0.5Sr0.5CoO3-δ as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe0.8Sm0.2O2.9[J]. Electrochim Acta, 2009, 54(21): 4888-4892.

    [47] [47] CHIBA R. An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells[J]. Solid State Ion, 1999, 124(3-4): 281-288.

    [48] [48] FU M, LI K L, YANG Y, et al. Fabrication and study of LaNi0.6Fe0.4O3-δ and Sm0.5Sr0.5CoO3-δ composite cathode for proton-conducting solid oxide fuel cells[J]. Sep Purif Technol, 2022, 287: 120581.

    [49] [49] LIU Q L, KHOR K A, CHAN S H. High-performance low-temperature solid oxide fuel cell with novel BSCF cathode[J]. J Power Sources, 2006, 161(1): 123-128.

    [50] [50] PE?A-MARTíNEZ J, MARRERO-LóPEZ D, RUIZ-MORALES J C, et al. Fuel cell studies of perovskite-type materials for IT-SOFC[J]. J Power Sources, 2006, 159(2): 914-921.

    [51] [51] MCINTOSH S, VENTE J F, HAIJE W G, et al. Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δ measured by in situ neutron diffraction[J]. Chem Mater, 2006, 18(8): 2187-2193.

    [52] [52] LIN Y, RAN R, ZHENG Y, et al. Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell[J]. J Power Sources, 2008, 180(1): 15-22.

    [53] [53] PENG R R, WU Y, YANG L Z, et al. Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film[J]. Solid State Ion, 2006, 177(3-4): 389-393.

    [54] [54] WEI B, LU? Z, LI S Y, et al. Thermal and electrical properties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3-δ for solid oxide fuel cells[J]. Electrochem Solid-State Lett, 2005, 8(8): A428.

    [55] [55] QIU P, WANG A, LI J, et al. Promoted CO2-poisoning resistance of La0.8Sr0.2MnO3-δ-coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for intermediate temperature solid oxide fuel cells[J]. J Power Sources, 2016, 327: 408-413.

    [56] [56] WANG F H, XU X, XIA Y P, et al. A novel CO2-tolerant Ba0.5Sr0.5Co0.8Fe0.1Ta0.1O3-δ cathode with high performance for proton-conducting solid oxide fuel cells[J]. Int J Hydrog Energy, 2021, 46(67): 33561-33571.

    [57] [57] ZHOU W, RAN R, SHAO Z P, et al. Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition[J]. Electrochim Acta, 2008, 53(13): 4370-4380.

    [58] [58] GRIMAUD A, MAUVY F, BASSAT J M, et al. Hydration properties and rate determining steps of the oxygen reduction reaction of perovskite-related oxides as H+-SOFC cathodes[J]. J Electrochem Soc, 2012, 159(6): B683-B694.

    [59] [59] XU X, WANG H Q, FRONZI M, et al. Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance[J]. J Mater Chem A, 2019, 7(36): 20624-20632.

    [60] [60] LI X M, LIU Y H, LIU W Y, et al. Mo-doping allows high performance for a perovskite cathode applied in proton-conducting solid oxide fuel cells[J]. Sustainable Energy Fuels, 2021, 5(17): 4261-4267.

    [61] [61] HU D Y, KIM J, NIU H J, et al. High-performance protonic ceramic fuel cell cathode using protophilic mixed ion and electron conducting material[J]. J Mater Chem A, 2022, 10(5): 2559-2566.

    [62] [62] SINGHAL S. Advances in solid oxide fuel cell technology[J]. Solid State Ion, 2000, 135(1-4): 305-313.

    [63] [63] DUSASTRE V, KILNER J A. Optimisation of composite cathodes for intermediate temperature SOFC applications[J]. Solid State Ion, 1999, 126(1-2): 163-174.

    [64] [64] MAGUIRE E. Cathode materials for intermediate temperature SOFCs[J]. Solid State Ion, 2000, 127(3-4): 329-335.

    [65] [65] TAI L. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3[J]. Solid State Ion, 1995, 76(3-4): 259-271.

    [66] [66] TAI L. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3[J]. Solid State Ion, 1995, 76(3-4): 273-283.

    [67] [67] ZHAO Z, LIU L, ZHANG X M, et al. High- and low- temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode operating under CO2/H2O-containing atmosphere[J]. Int J Hydrog Energy, 2013, 38(35): 15361-15370.

    [68] [68] WANG F F, KISHIMOTO H, DEVELOS-BAGARINAO K, et al. Interrelation between sulfur poisoning and performance degradation of LSCF cathode for SOFCs[J]. J Electrochem Soc, 2016, 163(8): F899-F904.

    [69] [69] LIU R R, TANIGUCHI S, SHIRATORI Y, et al. Influence of SO2 on the long-term durability of SOFC cathodes[J]. ECS Trans, 2011, 35(1): 2255-2260.

    [70] [70] KISHIMOTO H, WANG F F, CHO D H, et al. Degradation of LSCF cathode induced by SO2 in air[J]. ECS Trans, 2015, 68(1): 1045-1050.

    [71] [71] BUCHER E, GSPAN C, HOFER F, et al. Sulphur poisoning of the SOFC cathode material La0.6Sr0.4CoO3-δ[J]. Solid State Ion, 2013, 238: 15-23.

    [72] [72] MORI N Y, SATO Y, IHA M, et al. Sulfur poisoning of LSCF cathode in single step co-fired SOFC[J]. ECS Trans, 2015, 68(1): 1015-1022.

    [73] [73] WANG F F, YAMAJI K, CHO D H, et al. Sulfur poisoning on La0.6Sr0.4Co0.2Fe0.8O3 cathode for SOFCs[J]. J Electrochem Soc, 2011, 158(11): B1391.

    [74] [74] WANG C C, LUO D W, JIANG S P, et al. Highly sulfur poisoning-tolerant BaCeO3-impregnated La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for solid oxide fuel cells[J]. J Phys D: Appl Phys, 2018, 51(43): 435502.

    [75] [75] LEE S N, ATKINSON A, KILNER J A. Effect of chromium on La0.6Sr0.4Co0.2Fe0.8O3-δSolid oxide fuel cell cathodes[J]. J Electrochem Soc, 2013, 160(6): F629-F635.

    [76] [76] JIANG S P, ZHANG S, ZHEN Y D. Deposition of Cr species at (La, Sr)(Co, Fe)O3 cathodes of solid oxide fuel cells[J]. J Electrochem Soc, 2006, 153(1): A127.

    [77] [77] WEI B, CHEN K F, WANG C C, et al. Cr deposition on porous La0.6Sr0.4Co0.2Fe0.8O3-δ electrodes of solid oxide cells under open circuit condition[J]. Solid State Ion, 2015, 281: 29-37.

    [78] [78] CHEN Y, YOO S, LI X X, et al. An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes[J]. Nano Energy, 2018, 47: 474-480.

    [79] [79] NIU Y H, ZHOU Y C, LV W Q, et al. Enhancing oxygen reduction activity and Cr tolerance of solid oxide fuel cell cathodes by a multiphase catalyst coating[J]. Adv Funct Materials, 2021, 31(19): 2100034.

    [80] [80] ZHOU Y C, ZHANG W L, KANE N, et al. An efficient bifunctional air electrode for reversible protonic ceramic electrochemical cells[J]. Adv Funct Materials, 2021, 31(40): 2105386.

    [81] [81] WANG N, HUANG Z Y, TANG C M, et al. Functional layer engineering to improve performance of protonic ceramic fuel cells[J]. Rare Met, 2023, 42(7): 2250-2260.

    [82] [82] KIM J H, MANTHIRAM A. Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: An overview and perspective[J]. J Mater Chem A, 2015, 3(48): 24195-24210.

    [83] [83] TASKIN A A, LAVROV A N, ANDO Y. Fast oxygen diffusion in A-site ordered perovskites[J]. Prog Solid State Chem, 2007, 35(2-4): 481-490.

    [84] [84] KIM G, WANG S, JACOBSON A J, et al. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations[J]. J Mater Chem, 2007, 17(24): 2500-2505.

    [85] [85] CHANG A, SKINNER S, KILNER J. Electrical properties of GdBaCo2O5+x for ITSOFC applications[J]. Solid State Ion, 2006, 177(19-25): 2009-2011.

    [86] [86] LI N, Lü Z, WEI B, et al. Characterization of GdBaCo2O5+δ cathode for IT-SOFCs[J]. J Alloys Compd, 2008, 454(1-2): 274-279.

    [87] [87] TARANCóN A, MORATA A, DEZANNEAU G, et al. GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode[J]. J Power Sources, 2007, 174(1): 255-263.

    [88] [88] LIN B, ZHANG S Q, ZHANG L C, et al. Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray[J]. J Power Sources, 2008, 177(2): 330-333.

    [89] [89] TARANCóN A, SKINNER S J, CHATER R J, et al. Layered perovskites as promising cathodes for intermediate temperature solid oxidefuel cells[J]. J Mater Chem, 2007, 17(30): 3175-3181.

    [90] [90] LIN Y, RAN R, ZHANG C M, et al. Performance of PrBaCo2O5+δ as a proton-conducting solid-oxide fuel cell cathode[J]. J Phys Chem A, 2010, 114(11): 3764-3772.

    [91] [91] KIM J H, CASSIDY M, IRVINE J T S, et al. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5+δ (Ln=Pr, Sm, and Gd) as cathode materials for IT-SOFC[J]. J Electrochem Soc, 2009, 156(6): B682.

    [92] [92] DING H P, XUE X J. PrBa0.5Sr0.5Co2O5+δ layered perovskite cathode for intermediate temperature solid oxide fuel cells[J]. Electrochim Acta, 2010, 55(11): 3812-3816.

    [93] [93] CHEN Y, YOO S, CHOI Y, et al. A highly active, CO2-tolerant electrode for the oxygen reduction reaction[J]. Energy Environ Sci, 2018, 11(9): 2458-2466.

    [94] [94] ZHOU Y C, LIU E Z, CHEN Y, et al. An active and robust air electrode for reversible protonic ceramic electrochemical cells[J]. ACS Energy Lett, 2021, 6(4): 1511-1520.

    [95] [95] HOU S E, ALONSO J A, GOODENOUGH J B. Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells[J]. J Power Sources, 2010, 195(1): 280-284.

    [96] [96] YANG Y, SHI N, XIE Y, et al. K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells[J]. Electrochim Acta, 2021, 389: 138453.

    [97] [97] ZHU K, YANG Y, HUAN D M, et al. Theoretical and experimental investigations on K-doped SrCo0.9Nb0.1O3-δ as a promising cathode for proton-conducting solid oxide fuel cells[J]. ChemSusChem, 2021, 14(18): 3876-3886.

    [98] [98] XU Y S, XU K, ZHU F, et al. A low-lewis-acid-strength cation Cs+-doped double perovskite for fast and durable oxygen reduction/evolutions on protonic ceramic cells[J]. ACS Energy Lett, 2023, 8(10): 4145-4155.

    [99] [99] CHOI S, KUCHARCZYK C J, LIANG Y G, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells[J]. Nat Energy, 2018, 3: 202-210.

    [100] [100] SE?AR??S-RODR??GUEZ M A, GOODENOUGH J B. Magnetic and transport properties of the system La1-xSrxCoO3-δ (0≤x≤0.50)[J]. J Solid State Chem, 1995, 118(2): 323-336.

    [101] [101] WEBER A, IVERS-TIFFéE E. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications[J]. J Power Sources, 2004, 127(1-2): 273-283.

    [102] [102] KIM Y N, KIM J H, MANTHIRAM A. Effect of Fe substitution on the structure and properties of LnBaCo2-xFexO5+δ (Ln = Nd and Gd) cathodes[J]. J Power Sources, 2010, 195(19): 6411-6419.

    [103] [103] CHEREPANOV V A, AKSENOVA T V, GAVRILOVA L Y, et al. Structure, nonstoichiometry and thermal expansion of the NdBa(Co, Fe)2O5+δ layered perovskite[J]. Solid State Ion, 2011, 188(1): 53-57.

    [104] [104] ZHAO L, SHEN J C, HE B B, et al. Synthesis, characterization and evaluation of PrBaCo2-xFexO5+δ as cathodes for intermediate- temperature solid oxide fuel cells[J]. Int J Hydrog Energy, 2011, 36(5): 3658-3665.

    [105] [105] JIANG L, WEI T, ZENG R, et al. Thermal and electrochemical properties of PrBa0.5Sr0.5Co2-xFexO5+δ (x=0.5, 1.0, 1.5) cathode materials for solid-oxide fuel cells[J]. J Power Sources, 2013, 232: 279-285.

    [106] [106] LIU B, YANG J J, YAN D, et al. Novel PrBa0.9Ca0.1Co2-xZnxO5+δ double-perovskite as an active cathode material for high-performance proton-conducting solid oxide fuel cells[J]. Int J Hydrog Energy, 2020, 45(55): 31009-31016.

    [107] [107] HU T, ZHU F, XIA J J, et al. In situ engineering of a cobalt-free perovskite air electrode enabling efficient reversible oxygen reduction/evolution reactions[J]. Adv Funct Materials, 2023, 33(43): 2305567.

    [108] [108] YANG S J, CHANG W, JEONG H J, et al. High-performance protonic ceramic fuel cells with electrode-electrolyte composite cathode functional layers[J]. Int J Energy Res, 2022, 46(5): 6553-6561.

    [109] [109] PARK J S, CHOI H J, HAN G D, et al. High-performance protonic ceramic fuel cells with a PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode with palladium-rich interface coating[J]. J Power Sources, 2021, 482: 229043.

    [110] [110] ZHANG H, XU K, HE F, et al. Surface regulating of a double‐perovskite electrode for protonic ceramic fuel cells to enhance oxygen reduction activity and contaminants poisoning tolerance[J]. Advanced Energy Materials, 2022, 12(26): 2200761.

    [111] [111] BI L, SHAFI S P, DA’AS E H, et al. Tailoring the cathode-electrolyte interface with nanoparticles for boosting the solid oxide fuel cell performance of chemically stable proton-conducting electrolytes[J]. Small, 2018, 14(32): e1801231.

    [112] [112] CHEN J Y, LI J, JIA L C, et al. A novel layered perovskite Nd(Ba0.4Sr0.4Ca0.2)Co1.6Fe0.4O5+δ as cathode for proton-conducting solid oxide fuel cells[J]. J Power Sources, 2019, 428: 13-19.

    [113] [113] KIM J H, KIM Y N, CHO S M, et al. Electrochemical characterization of YBaCo3ZnO7+Gd0.2Ce0.8O1.9 composite cathodes for intermediate temperature solid oxide fuel cells[J]. Electrochim Acta, 2010, 55(19): 5312-5317.

    [114] [114] RUDDLESDEN S N, POPPER P. The compound Sr3Ti2O7 and its structure[J]. Acta Crystallogr, 1958, 11(1): 54-55.

    [115] [115] BASSAT J. Anisotropic ionic transport properties in La2NiO4+δ single crystals[J]. Solid State Ion, 2004, 167(3-4): 341-347.

    [116] [116] BOEHM E, BASSAT J, DORDOR P, et al. Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+δ oxides[J]. Solid State Ion, 2005, 176(37-38): 2717-2725.

    [117] [117] LYAGAEVA J, DANILOV N, VDOVIN G, et al. A new Dy-doped BaCeO3-BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells[J]. J Mater Chem A, 2016, 4(40): 15390-15399.

    [118] [118] TARUTIN A P, LYAGAEVA J G, MEDVEDEV D A, et al. Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells[J]. J Mater Chem A, 2021, 9(1): 154-195.

    [119] [119] GHORBANI-MOGHADAM T, KOMPANY A, BAGHERI- MOHAGHEGHI M M, et al. High temperature electrical conductivity and electrochemical investigation of La2-xSrxCoO4 nanoparticles for IT-SOFC cathode[J]. Ceram Int, 2018, 44(17): 21238-21248.

    [120] [120] LI Q, ZHAO H, HUO L H, et al. Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs[J]. Electrochem Commun, 2007, 9(7): 1508-1512.

    [121] [121] DING P P, LI W L, ZHAO H W, et al. Review on Ruddlesden-Popper perovskites as cathode for solid oxide fuel cells[J]. J Phys Mater, 2021, 4(2): 022002.

    [122] [122] YAQUB A, JANJUA N K, SAVANIU C, et al. Synthesis and characterization of B-site doped La0.20Sr0.25Ca0.45TiO3 as SOFC anode materials[J]. Int J Hydrog Energy, 2015, 40(1): 760-766.

    [123] [123] TROPIN E S, ANANYEV M V, FARLENKOV A S, et al. Surface defect chemistry and oxygen exchange kinetics in La2-xCaxNiO4+δ[J]. J Solid State Chem, 2018, 262: 199-213.

    [124] [124] ZHU Z S, LI M, XIA C R, et al. Bismuth-doped La1.75Sr0.25NiO4+δ as a novel cathode material for solid oxide fuel cells[J]. J Mater Chem A, 2017, 5(27): 14012-14019.

    [125] [125] SAYERS R, SKINNER S J. Evidence for the catalytic oxidation of La2NiO4+δ[J]. J Mater Chem, 2011, 21(2): 414-419.

    [126] [126] SKINNER S. Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ[J]. Solid State Ion, 2000, 135(1-4): 709-712.

    [127] [127] INPRASIT T, LIMTHONGKUL P, WONGKASEMJIT S. Sol-gel and solid-state synthesis and property study of La2-xSrxNiO4 (x≤0.8)[J]. J Electrochem Soc, 2010, 157(11): B1726.

    [128] [128] YANG S J, WEN Y B, ZHANG J C, et al. Electrochemical performance and stability of cobalt-free Ln1.2Sr0.8NiO4 (Ln=La and Pr) air electrodes for proton-conducting reversible solid oxide cells[J]. Electrochim Acta, 2018, 267: 269-277.

    [129] [129] MIAO L N, HOU J, GONG Z, et al. A high-performance cobalt-free Ruddlesden-Popper phase cathode La1.2Sr0.8Ni0.6Fe0.4O4+δ for low temperature proton-conducting solid oxide fuel cells[J]. Int J Hydrog Energy, 2019, 44(14): 7531-7537.

    [130] [130] ZHANG L F, YAO F, MENG J L, et al. Oxygen migration and proton diffusivity in transition-metal (Mn, Fe, Co, and Cu) doped Ruddlesden-Popper oxides[J]. J Mater Chem A, 2019, 7(31): 18558-18567.

    [131] [131] LI W Y, GUAN B, MA L, et al. High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell[J]. J Mater Chem A, 2018, 6(37): 18057-18066.

    [132] [132] CHEN Z Z, WANG J L, HUAN D M, et al. Tailoring the activity via cobalt doping of a two-layer Ruddlesden-Popper phase cathode for intermediate temperature solid oxide fuel cells[J]. J Power Sources, 2017, 371: 41-47.

    [133] [133] WANG Q, HOU J, FAN Y, et al. Pr2BaNiMnO7?δ double-layered Ruddlesden-Popper perovskite oxides as efficient cathode electrocatalysts for low temperature proton conducting solid oxide fuel cells[J]. J Mater Chem A, 2020, 8(16): 7704-7712.

    [134] [134] HOU J, GONG J Y, BI L. Advancing cathodic electrocatalysis via an in situ generated dense active interlayer based on CuO5 pyramid- structured Sm2Ba1.33Ce0.67Cu3O9[J]. J Mater Chem A, 2022, 10(30): 15949-15959.

    [135] [135] SAQIB M, CHOI I G, BAE H, et al. Transition from perovskite to misfit-layered structure materials: A highly oxygen deficient and stable oxygen electrode catalyst[J]. Energy Environ Sci, 2021, 14(4): 2472-2484.

    [136] [136] MATVEJEFF M, LEHTIM?KI M, HIRASA A, et al. New water-containing phase derived from the Sr3Fe2O7-δ phase of the Ruddlesden?Popper structure[J]. Chem Mater, 2005, 17(10): 2775-2779.

    [137] [137] WANG Z Q, YANG W Q, SHAFI S P, et al. A high performance cathode for proton conducting solid oxide fuel cells[J]. J Mater Chem A, 2015, 3(16): 8405-8412.

    [138] [138] JIN M F, ZHANG X L, QIU Y E, et al. Layered PrBaCo2O5+δ perovskite as a cathode for proton-conducting solid oxide fuel cells[J]. J Alloys Compd, 2010, 494(1-2): 359-361.

    [139] [139] DING H P, XUE X J, LIU X Q, et al. High performance protonic ceramic membrane fuel cells (PCMFCs) with Sm0.5Sr0.5CoO3-δ perovskite cathode[J]. J Alloys Compd, 2010, 494(1-2): 233-235.

    [140] [140] HUAN D M, SHI N, ZHANG L, et al. New, efficient, and reliable air electrode material for proton-conducting reversible solid oxide cells[J]. ACS Appl Mater Interfaces, 2018, 10(2): 1761-1770.

    [141] [141] JEONG N C, LEE J S, TAE E L, et al. Acidity scale for metal oxides and Sanderson’s electronegativities of lanthanide elements[J]. Angew Chem Int Ed Engl, 2008, 47(52): 10128-10132.

    [142] [142] DING D, LI X X, LAI S Y, et al. Enhancing SOFC cathode performance by surface modification through infiltration[J]. Energy Environ Sci, 2014, 7(2): 552-575.

    [143] [143] CONNOR P A, YUE X L, SAVANIU C D, et al. Tailoring SOFC electrode microstructures for improved performance[J]. Adv Energy Mater, 2018, 8(23): 1800120.

    [144] [144] SUN C, YANG S J, LU Y, et al. Tailoring a micro-nanostructured electrolyte-oxygen electrode interface for proton-conducting reversible solid oxide cells[J]. J Power Sources, 2020, 449: 227498.

    [145] [145] LI G, JIN H Y, CUI Y X, et al. Application of a novel (Pr0.9La0.1)2(Ni0.74Cu0.21Nb0.05)O4+δ-infiltrated BaZr0.1Ce0.7Y0.2O3-δ cathode for high performance protonic ceramic fuel cells[J]. J Power Sources, 2017, 341: 192-198.

    [146] [146] HU T, HE F, LIU M L, et al. In situ/operando regulation of the reaction activities on hetero-structured electrodes for solid oxide cells[J]. Prog Mater Sci, 2023, 133: 101050.

    [147] [147] XIA J J, ZHU F, HE F, et al. Self-configured composites of ruddlesden-popper perovskite and Pr6O11 as efficient and durable air electrodes for reversible protonic ceramic electrochemical cells[J]. Adv Energy Mater, 2023, 13(46): 2302964.

    [148] [148] XU X M, PAN Y L, ZHONG Y J, et al. Ruddlesden-popper perovskites in electrocatalysis[J]. Mater Horiz, 2020, 7(10): 2519-2565.

    [149] [149] ZHAO Q, YAN Z H, CHEN C C, et al. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond[J]. Chem Rev, 2017, 117(15): 10121-10211.

    [150] [150] CHEN D J, CHEN C, BAIYEE Z M, et al. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chem Rev, 2015, 115(18): 9869-9921.

    [151] [151] LI B Q, TANG C, WANG H F, et al. An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance[J]. Sci Adv, 2016, 2(10): e1600495.

    [152] [152] HILL R J, CRAIG J R, GIBBS G V. Systematics of the spinel structure type[J]. Phys Chem Miner, 1979, 4(4): 317-339.

    [153] [153] SICKAFUS K E, WILLS J M, GRIMES N W. Structure of spinel[J]. J Am Ceram Soc, 1999, 82(12): 3279-3292.

    [154] [154] SEKO A, YUGE K, OBA F, et al. Prediction of ground-state structures and order-disorder phase transitions in II-III spinel oxides: A combined cluster-expansion method and first-principles study[J]. Phys Rev B, 2006, 73(18): 184117.

    [155] [155] GRIMES R W, ANDERSON A B, HEUER A H. Predictions of cation distributions in AB2O4 spinels from normalized ion energies[J]. J Am Chem Soc, 1989, 111(1): 1-7.

    [156] [156] GOODENOUGH J B, LOEB A L. Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels[J]. Phys Rev, 1955, 98(2): 391-408.

    [157] [157] XU Y S, XU X, BI L. A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells[J]. J Adv Ceram, 2022, 11(5): 794-804.

    [158] [158] XU Y S, GU Y Y, BI L. A highly-active Zn0.58Co2.42O4 spinel oxide as a promising cathode for proton-conducting solid oxide fuel cells[J]. J Mater Chem A, 2022, 10(48): 25437-25445.

    [159] [159] YANG X, XU Y S, YU S F, et al. A new CoFe1.9Li0.1O4 spinel oxide cathode for proton-conducting solid oxide fuel cells[J]. Ceram Int, 2022, 48(22): 34098-34104.

    [160] [160] WANG J P, LU Y Z, MUSHTAQ N, et al. Novel LaFe2O4 spinel structure with a large oxygen reduction response towards protonic ceramic fuel cell cathode[J]. J Rare Earths, 2023, 41(3): 413-421.

    [161] [161] HUANG Q, JIANG S S, WANG Y J, et al. Highly active and durable triple conducting composite air electrode for low-temperature protonic ceramic fuel cells[J]. Nano Res, 2023, 16(7): 9280-9288.

    [162] [162] HE F, ZHOU Y C, HU T, et al. An efficient high-entropy perovskite-type air electrode for reversible oxygen reduction and water splitting in protonic ceramic cells[J]. Adv Mater, 2023, 35(16): e2209469.

    [163] [163] PEI K, LUO S R, HE F, et al. Constructing an active and stable oxygen electrode surface for reversible protonic ceramic electrochemical cells[J]. Appl Catal B Environ, 2023, 330: 122601.

    [164] [164] HE F, LIU S, WU T, et al. Catalytic self-assembled air electrode for highly active and durable reversible protonic ceramic electrochemical cells[J]. Adv Funct Materials, 2022, 32(48): 2206756.

    [165] [165] YANG G M, SU C, SHI H G, et al. Toward reducing the operation temperature of solid oxide fuel cells: Our past 15 years of efforts in cathode development[J]. Energy Fuels, 2020, 34(12): 15169-15194.

    [166] [166] HU S M, LI J, ZENG Y, et al. A mini review of the recent progress of electrode materials for low-temperature solid oxide fuel cells[J]. Phys Chem Chem Phys, 2023, 25(8): 5926-5941.

    [167] [167] YOKOKAWA H, TU H Y, IWANSCHITZ B, et al. Fundamental mechanisms limiting solid oxide fuel cell durability[J]. J Power Sources, 2008, 182(2): 400-412.

    [168] [168] LI H D, LAI J P, LI Z J, et al. Multi-sites electrocatalysis in high-entropy alloys[J]. Adv Funct Materials, 2021, 31(47): 2106715.

    [169] [169] WANG J, LIU W, LUO G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction[J]. Energy Environ Sci, 2018, 11(12): 3375-3379.

    [170] [170] KONYSHEVA E Y, XU X X, IRVINE J T S. On the existence of A-site deficiency in perovskites and its relation to the electrochemical performance[J]. Adv Mater, 2012, 24(4): 528-532.

    [171] [171] XU X M, PAN Y L, GE L, et al. High-performance perovskite composite electrocatalysts enabled by controllable interface engineering[J]. Small, 2021, 17(29): e2101573.

    [172] [172] JI Q Q, BI L, ZHANG J T, et al. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction[J]. Energy Environ Sci, 2020, 13(5): 1408-1428.

    [173] [173] LIANG M Z, HE F, ZHOU C, et al. Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3-δ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells[J]. Chem Eng J, 2021, 420: 127717.

    [174] [174] LI M, PIETROWSKI M J, DE SOUZA R A, et al. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3[J]. Nat Mater, 2014, 13(1): 31-35.

    [175] [175] NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nat Commun, 2015, 6: 8120.

    [176] [176] KIM J H, HONG J, LIM D K, et al. Water as a hole-predatory instrument to create metal nanoparticles on triple-conducting oxides[J]. Energy Environ Sci, 2022, 15(3): 1097-1105.

    Tools

    Get Citation

    Copy Citation Text

    GONG Wenjie, XU Kang, XIA Jiaojiao, XU Yangseng, CHEN Yu. Recent Development on Cathodes for Intermediate- and Low-Temperature Protonic Ceramic Fuel Cells[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1917

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Feb. 2, 2024

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Yu CHEN (eschenyu@scut.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240105

    Topics