Matter and Radiation at Extremes, Volume. 9, Issue 2, 027801(2024)
Five-view three-dimensional reconstruction for ultrafast dynamic imaging of pulsed radiation sources
[9] Y. W.Chen, N.Miyanaga, M.Nakai, S.Nakai, M.Yamanaka, T.Yamanaka. Three-dimensional imaging of laser-imploded targets using X-ray computed tomography technique, 1, 283-286(1996).
[15] K.He, S.Ren, J.Sun, X.Zhang. Deep residual learning for image recognition, 770-778(2016).
[17] Q.Le, M.Tan. EfficientNet: Rethinking model scaling for convolutional neural networks, 6105-6114(2019).
[18] T.Darrell, C.Feichtenhofer, Z.Liu, H.Mao, C. Y.Wu, S.Xie. A ConvNet for the 2020s, 11966-11976(2022).
[25] T.Brox, P.Fischer, O.Ronneberger. U-Net: Convolutional networks for biomedical image segmentation, 9351, 234-241(2015).
[30] J.Ba, D. P.Kingma. Adam: A method for stochastic optimization.
Get Citation
Copy Citation Text
Jianpeng Gao, Liang Sheng, Xinyi Wang, Yanhong Zhang, Liang Li, Baojun Duan, Mei Zhang, Yang Li, Dongwei Hei. Five-view three-dimensional reconstruction for ultrafast dynamic imaging of pulsed radiation sources[J]. Matter and Radiation at Extremes, 2024, 9(2): 027801
Category:
Received: Sep. 21, 2023
Accepted: Nov. 30, 2023
Published Online: Apr. 15, 2024
The Author Email: