Journal of the Chinese Ceramic Society, Volume. 52, Issue 12, 3868(2024)

Influencing Factors and Improvement Approaches of Thermal Conductivity of Silicon Nitride Ceramics for Thermal Management

WANG Feng1... HE Zhiyong1,*, WANG Xiaobo1, WANG Bulai2, MENG Qing3 and LI Jiangtao3 |Show fewer author(s)
Author Affiliations
  • 1China Iron & Steel Research Institute Group, Beijing 100081, China
  • 2School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
  • 3Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, China
  • show less
    References(84)

    [1] [1] OKUMURA H. Present status and future prospect of widegap semiconductor high-power devices[J]. Jpn J Appl Phys, 2006, 45(10R): 7565.

    [2] [2] HU F, XIE Z P, ZHANG J, et al. Promising high-thermal-conductivity substrate material for high-power electronic device: Silicon nitride ceramics[J]. Rare Mat, 2020, 39(5): 463-478.

    [3] [3] ZHUANG Y H, SUN F, ZHOU L J, et al. The influence of magnesium compounds on the properties of silicon nitride ceramics[J]. Int J Appl Ceram Technol, 2024, 21(3): 2273-2287.

    [4] [4] XIANG H M, FENG Z H, LI Z P, et al. Theoretical predicted high-thermal-conductivity cubic Si3N4 and Ge3N4: Promising substrate materials for high-power electronic devices[J]. Sci Rep, 2018, 8(1): 14374.

    [5] [5] NAKASHIMA Y, ZHOU Y, TANABE K, et al. Effects of nitrogen pressure on properties of sintered reaction-bonded silicon nitride[J]. Int J Appl Ceram Technol, 2023, 20(6): 3376-3384.

    [6] [6] FURUYA K, MUNAKATA F, MATSUO K, et al. Microstructural control of -silicon nitride ceramics to improve thermal conductivity[J]. J Therm Anal Calorim, 2002, 69(3): 873-879.

    [7] [7] SHEN Q, LIN Z J, DENG J J, et al. Effects of -Si3N4 seeds on microstructure and performance of Si3N4 ceramics in semiconductor package[J]. Materials, 2023, 16(12): 4461.

    [8] [8] GIZOWSKA M, PITEK M, PERKOWSKI K, et al. Influence of sintering conditions and nanosilicon carbide concentration on the mechanical and thermal properties of Si3N4-based materials[J]. Materials, 2023, 16(5): 2079.

    [9] [9] SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. J Phys Chem Solids, 1973, 34(2): 321-335.

    [10] [10] HAGGERTY J S, LIGHTFOOT A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing[M]//Ceramic Engineering and Science Proceedings. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008: 475-487.

    [11] [11] WATARI K, LI B C, POTTIER L, et al. Thermal conductivity of -Si3N4 single crystal[J]. Key Eng Mater, 2000, 181-182: 239-242

    [12] [12] KRSTIC Z, KRSTIC V D. Silicon nitride: The engineering material of the future[J]. J Mater Sci, 2012, 47(2): 535-552.

    [13] [13] RILEY F L. Silicon nitride and related materials[J]. J Am Ceram Soc, 2000, 83(2): 245-265.

    [14] [14] HARDIE D, JACK K H. Crystal structures of silicon nitride[J]. Nature, 1957, 180: 332-333.

    [15] [15] WANG C M, PAN X Q, RHLE M, et al. Silicon nitride crystal structure and observations of lattice defects[J]. J Mater Sci, 1996, 31(20): 5281-5298.

    [16] [16] HAMPSHIRE S. Silicon nitride ceramics-Review of structure, processing and properties[J]. J Achiev Mater Manuf Eng, 2007, 24(1): 43-50.

    [17] [17] NARITA K, MORI K J. Crystal structures of silicon nitride[J]. Bull Chem Soc Jpn, 1959, 32(4): 417-419.

    [18] [18] HAMPSHIRE S. Silicon nitride ceramics[J]. Mater Sci Forum, 2008, 606: 27-41.

    [19] [19] PETZOW G, HERRMANN M. Silicon nitride ceramics[M]//JANSEN M, ed. Structure and Bonding. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002: 147-167.

    [20] [20] GRN R. The crystal structure of -Si3N4: Structural and stability considerations between - and -Si3N4[J]. Acta Crystallogr B Struct Crystallogr Cryst Chem, 1979, 35(4): 800-804.

    [21] [21] SARIN V K. On the -to- phase transformation in silicon nitride[J]. Mater Sci Eng A, 1988, 105-106: 151-159.

    [22] [22] HIROSAKI N, OGATA S, KOCER C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal -and -Si3N4[J]. Phys Rev B, 2002, 65(13): 134110.

    [23] [23] LI Y, DUAN X L, FU Z W, et al. Intrinsic electron mobility and lattice thermal conductivity of -Si3N4 from first-principles[J]. Solid State Commun, 2023, 361: 115066.

    [24] [24] HIRAO K, WATARI K, HAYASHI H, et al. High thermal conductivity silicon nitride ceramic[J]. MRS Bull, 2001, 26(6): 451-455.

    [25] [25] WATARI K, HIRAO K, TORIYAMA M, et al. Effect of grain size on the thermal conductivity of Si3N4[J]. J Am Ceram Soc, 1999, 82(3): 777-779.

    [26] [26] YOKOTA H, IBUKIYAMA M. Microstructure tailoring for high thermal conductivity of -Si3N4 ceramics[J]. J Am Ceram Soc, 2003, 86(1): 197-199.

    [27] [27] YOKOTA H, IBUKIYAMA M. Effect of the addition of -Si3N4 nuclei on the thermal conductivity of -Si3N4 ceramics[J]. J Eur Ceram Soc, 2003, 23(8): 1183-1191.

    [28] [28] YOKOTA H, ABE H, IBUKIYAMA M. Effect of lattice defects on the thermal conductivity of -Si3N4[J]. J Eur Ceram Soc, 2003, 23(10): 1751-1759.

    [29] [29] KITAYAMA M, HIRAO K, TSUGE A, et al. Thermal conductivity of -Si3N4: II, effect of lattice oxygen[J]. J Am Ceram Soc, 2000, 83(8): 1985-1992.

    [30] [30] AMMAR M M, GHARIB S, HALAWA M M, et al. Thermal conductivity of some silicate glasses in relation to composition and structure[J]. J Non Cryst Solids, 1982, 53(1/2): 165-172.

    [31] [31] WASANAPIARNPONG T, WADA S, IMAI M, et al. Thermal conductivity improvement by heat-treatment in Si3N4 ceramics using SiO2-MgO-Y2O3 additive system[J]. Key Eng Mater, 2007, 352: 233-238.

    [32] [32] KITAYAMA M, HIRAO K, TORIYAMA M, et al. Thermal conductivity of -Si3N4: I, effects of various microstructural factors[J]. J Am Ceram Soc, 1999, 82(11): 3105-3112.

    [33] [33] ZHU X W, ZHOU Y, HIRAO K, et al. Potential use of only Yb2O3 in producing dense Si3N4 ceramics with high thermal conductivity by gas pressure sintering[J]. Sci Technol Adv Mater, 2010, 11(6): 065001.

    [34] [34] LIU X L, PENG M M, NING X S, et al. Effect of -Si3N4 powder on thermal conductivity of silicon nitride ceramics[J]. Key Eng Mater, 2015, 655: 11-16.

    [35] [35] TSAO G T N. Thermal conductivity of two-phase materials[J]. Ind Eng Chem, 1961, 53(5): 395-397.

    [36] [36] HIROSAKI N, OKAMOTO Y, ANDO M, et al. Thermal conductivity of gas-pressure-sintered silicon nitride[J]. J Am Ceram Soc, 1996, 79(11): 2878-2882.

    [37] [37] YOKOTA H, YAMADA S, IBUKIYAMA M. Effect of large -Si3N4 particles on the thermal conductivity of -Si3N4 ceramics[J]. J Eur Ceram Soc, 2003, 23(8): 1175-1182.

    [38] [38] IMAMURA H, KAWATA T, HONDA S, et al. Thermal conductivity improvement in silicon nitride ceramics via grain purification[J]. J Am Ceram Soc, 2024, 107(2): 1159-1169.

    [39] [39] DE PABLOS A, OSENDI M I, MIRANZO P. Effect of microstructure on the thermal conductivity of hot-pressed silicon nitride materials[J]. J Am Ceram Soc, 2002, 85(1): 200-206.

    [40] [40] WANG W D, PAN Y, ZENG Y P, et al. Effect of sintering aids content and powder characteristics on gas pressure sintered Si3N4 ceramics[J]. Ceram Int, 2024, 50(5): 8260-8268.

    [41] [41] ZIEGLER G, HEINRICH J, WTTING G. Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride[J]. J Mater Sci, 1987, 22(9): 3041-3086.

    [42] [42] KUSANO D, ADACHI S, TANABE G, et al. Effects of impurity oxygen content in raw Si powder on thermal and mechanical properties of sintered reaction-bonded silicon nitrides[J]. Int J Appl Ceram Technol, 2012, 9(2): 229-238.

    [43] [43] ZHU X W, ZHOU Y, HIRAO K, et al. Processing and thermal conductivity of sintered reaction-bonded silicon nitride. I: Effect of Si powder characteristics[J]. J Am Ceram Soc, 2006, 89(11): 3331-3339.

    [44] [44] GOLLA B R, KO J W, KIM J M, et al. Effect of particle size and oxygen content of Si on processing, microstructure and thermal conductivity of sintered reaction bonded Si3N4[J]. J Alloys Compd, 2014, 595(15): 60-66.

    [45] [45] PARK Y J, PARK M J, KIM J M, et al. Sintered reaction-bonded silicon nitrides with high thermal conductivity: The effect of the starting Si powder and Si3N4 diluents[J]. J Eur Ceram Soc, 2014, 34(5): 1105-1113.

    [46] [46] LIU D M, CHEN C J, LEE R R R. Thermal diffusivity/conductivity in SiAlON ceramics[J]. J Appl Phys, 1995, 77(2): 494-496.

    [47] [47] KUSANO D, HYUGA H, ZHOU Y, et al. Effect of aluminum content on mechanical properties and thermal conductivities of sintered reaction-bonded silicon nitride[J]. Int J Appl Ceram Technol, 2014, 11(3): 534-542.

    [48] [48] OH H M, LEE H K. Controlling the width of particle size distribution of Si powder and properties of sintered reaction-bonded silicon nitride (SRBSN) ceramics with high thermal conductivity[J]. Ceram Int, 2020, 46(8): 12517-12524.

    [49] [49] GO S I, LI Y S, KO J W, et al. Microstructure and thermal conductivity of sintered reaction-bonded silicon nitride: The particle size effects of MgO additive[J]. Adv Mater Sci Eng, 2018, 2018: 4263497.

    [50] [50] KITAYAMA M, HIRAO K, TSUGE A, et al. Oxygen content in -Si3N4 crystal lattice[J]. J Am Ceram Soc, 1999, 82(11): 3263-3265.

    [51] [51] HIROSAKI N, OKAMOTO Y, MUNAKATA F, et al. Effect of seeding on the thermal conductivity of self-reinforced silicon nitride[J]. J Eur Ceram Soc, 1999, 19(12): 2183-2187.

    [52] [52] LEE H M, TATAMI J, KIM D K. Microstructural evolution of Si3N4 ceramics from starting powders with different -to- ratios[J]. J Ceram Soc Japan, 2016, 124(8): 800-807.

    [53] [53] KONG J H, MA H J, JUNG W K, et al. Self-reinforced and high-thermal conductivity silicon nitride by tailoring - phase ratio with pressureless multi-step sintering[J]. Ceram Int, 2021, 47(9): 13057-13064.

    [56] [56] KITAYAMA M, HIRAO K, WATARI K, et al. Thermal conductivity of -Si3N4: III, effect of rare-earth (RE = La, Nd, Gd, Y, Yb, and Sc) oxide additives[J]. J Am Ceram Soc, 2001, 84(2): 353-358.

    [57] [57] LIU W, TONG W X, LU X X, et al. Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates[J]. Ceram Int, 2019, 45(9): 12436-12442.

    [58] [58] DUAN Y S, LIU N, ZHANG J X, et al. Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties[J]. J Eur Ceram Soc, 2020, 40(2): 298-304.

    [59] [59] ZHU X W, ZHOU Y, HIRAO K. Effect of sintering additive composition on the processing and thermal conductivity of sintered reaction-bonded Si3N4[J]. J Am Ceram Soc, 2004, 87(7): 1398-1400.

    [60] [60] LEE H M, LEE E B, KIM D L, et al. Comparative study of oxide and non-oxide additives in high thermal conductive and high strength Si3N4 ceramics[J]. Ceram Int, 2016, 42(15): 17466-17471.

    [62] [62] LIANG Z H, LI J, GUI L C, et al. The role of MgSiN2 during the sintering process of silicon nitride ceramic[J]. Ceram Int, 2013, 39(4): 3817-3822.

    [64] [64] HAYASHI H, HIRAO K, TORIYAMA M, et al. MgSiN2 addition as a means of increasing the thermal conductivity of -silicon nitride[J]. J Am Ceram Soc, 2001, 84(12): 3060-3062.

    [66] [66] HU F, ZHU T B, XIE Z P, et al. Effect of composite sintering additives containing non-oxide on mechanical, thermal and dielectric properties of silicon nitride ceramics substrate[J]. Ceram Int, 2021, 47(10): 13635-13643.

    [67] [67] ZHU X W, ZHOU Y, HIRAO K, et al. Processing and thermal conductivity of sintered reaction-bonded silicon nitride: (II) effects of magnesium compound and yttria additives[J]. J Am Ceram Soc, 2007, 90(6): 1684-1692.

    [68] [68] LIANG H Q, WANG W D, ZUO K H, et al. Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride ceramics[J]. Ceram Int, 2020, 46(11): 17776-17783.

    [69] [69] LIANG H Q, WANG W D, ZUO K H, et al. YB2C2: A new additive for fabricating Si3N4 ceramics with superior mechanical properties and medium thermal conductivity[J]. Ceram Int, 2020, 46(4): 5239-5243.

    [70] [70] YANG C P, LIU Q, ZHANG B, et al. Effect of MgF2 addition on mechanical properties and thermal conductivity of silicon nitride ceramics[J]. Ceram Int, 2019, 45(10): 12757-12763.

    [71] [71] WANG W D, YAO D X, LIANG H Q, et al. Improved thermal conductivity of -Si3N4 ceramics through the modification of the liquid phase by using GdH2 as a sintering additive[J]. Ceram Int, 2021, 47(4): 5631-5638.

    [72] [72] WANG W D, YAO D X, LIANG H Q, et al. Improved thermal conductivity of -Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive[J]. J Am Ceram Soc, 2020, 103(10): 5567-5572.

    [73] [73] WANG W D, YAO D X, LIANG H Q, et al. Effect of the binary nonoxide additives on the densification behavior and thermal conductivity of Si3N4 ceramics[J]. J Am Ceram Soc, 2020, 103(10): 5891-5899.

    [74] [74] LI Y S, KIM H N, WU H B, et al. Enhanced thermal conductivity in Si3N4 ceramic by addition of a small amount of carbon[J]. J Euro Ceram Soc, 2019, 39(2/3): 157-164.

    [75] [75] ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Adv Mater, 2011, 23(39): 4563-4567.

    [76] [76] ZHOU Y, HYUGA H, KUSANO D, et al. Development of high-thermal-conductivity silicon nitride ceramics[J]. J Asian Ceram Soc, 2015, 3(3): 221-229.

    [77] [77] ZHANG J, CUI W, LI F, et al. Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics[J]. Ceram Int, 2020, 46(10): 15719-15722.

    [79] [79] ZHU X W, SAKKA Y, ZHOU Y, et al. The effect of embedding conditions on the thermal conductivity of -Si3N4[J]. J Ceram Soc Japan, 2006, 114(1335): 1093-1096.

    [80] [80] LI Y S, KIM H N, WU H B, et al. Improved thermal conductivity of sintered reaction-bonded silicon nitride using a BN/graphite powder bed[J]. J Eur Ceram Soc, 2017, 37(15): 4483-4490.

    [81] [81] HU F, ZHU T B, XIE Z P, et al. Elimination of grain boundaries and its effect on the properties of silicon nitride ceramics[J]. Ceram Int, 2020, 46(8): 12606-12612.

    [82] [82] ZHU X W, SAKKA Y. Textured silicon nitride: Processing and anisotropic properties[J]. Sci Technol Adv Mater, 2008, 9(3): 033001.

    [83] [83] LEE F, BOWMAN K J. Texture and anisotropy in silicon nitride[J]. J Am Ceram Soc, 1992, 75(7): 1748-1755.

    [84] [84] SEABAUGH M M, KERSCHT I H, MESSING G L. Texture development by templated grain growth in liquid-phase-sintered -alumina[J]. J Am Ceram Soc, 1997, 80(5): 1181-1188.

    [85] [85] ZHANG Z, DUAN X M, QIU B F, et al. Preparation and anisotropic properties of textured structural ceramics: A review[J]. J Adv Ceram, 2019, 8(3): 289-332.

    [86] [86] ZHU X W, SAKKA Y, SUZUKI T S, et al. The c-axis texturing of seeded Si3N4 with -Si3N4 whiskers by slip casting in a rotating magnetic field[J]. Acta Mater, 2010, 58(1): 146-161.

    [87] [87] HIRAO K, WATARI K, BRITO M E, et al. High thermal conductivity in silicon nitride with anisotropie microstructure[J]. J Am Ceram Soc, 1996, 79(9): 2485-2488.

    [88] [88] WATARI K, HIRAO K, BRITO M E, et al. Hot isostatic pressing to increase thermal conductivity of Si3N4 ceramics[J]. J Mater Res, 1999, 14(4): 15.

    [89] [89] OKAMOTO Y, HIROSAKI N, ANDO M, et al. Thermal conductivity of self-reinforced silicon nitride containing large grains aligned by extrusion pressing[J]. J Ceram Soc Japan, 1997, 105(1223): 631-633.

    [90] [90] ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. J Eur Ceram Soc, 2014, 34(10): 2585-2589.

    Tools

    Get Citation

    Copy Citation Text

    WANG Feng, HE Zhiyong, WANG Xiaobo, WANG Bulai, MENG Qing, LI Jiangtao. Influencing Factors and Improvement Approaches of Thermal Conductivity of Silicon Nitride Ceramics for Thermal Management[J]. Journal of the Chinese Ceramic Society, 2024, 52(12): 3868

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 11, 2024

    Accepted: Jan. 2, 2025

    Published Online: Jan. 2, 2025

    The Author Email: Zhiyong HE (hezhiyong@cisri.com.cn)

    DOI:10.14062/j.issn.0454-5648.20240331

    Topics