Infrared and Laser Engineering, Volume. 48, Issue 6, 603014(2019)

Review of the development of differential phase contrast microscopy

Fan Yao, Chen Qian, Sun Jiasong, Zhang Zuxin, Lu Linpeng, and Zuo Chao
Author Affiliations
  • [in Chinese]
  • show less
    References(63)

    [1] [1] Mertz J. Introduction to Optical Microscopy[M]. Colorado: Roberts, 2010: 138.

    [2] [2] Arnison M R, Larkin K G, Sheppard C J R, et al. Linear phase imaging using differential interference contrast microscopy[J]. Journal of Microscopy, 2004, 214(1): 7.

    [3] [3] Zernike F. How I discovered phase contrast[J]. Science, 1955, 121(3141): 345-349.

    [4] [4] Burch C, Stock J. Phase-contrast microscopy[J]. Journal of Scientific Instruments, 1942, 19(5): 71.

    [5] [5] Hamilton D, Sheppard C. Differential phase contrast in scanning optical microscopy[J]. Journal of Microscopy, 1984, 133(1): 27.

    [6] [6] Hamilton D K, Sheppard C J R, Wilson T. Improved imaging of phase gradients in scanning optical microscopy[J]. Journal of Microscopy, 1984, 135(3): 275.

    [7] [7] Kim Y, Shim H, Kim K, et al. Profiling individual human red blood cells using common-path diffraction optical tomography[J]. Scientific Reports, 2014, 4: 6659.

    [8] [8] Popescu G. Quantitative phase imaging of nanoscale cell structure and dynamics[J]. Methods in Cell Biology, 2008, 90: 87-115.

    [9] [9] Mann C J, Yu L, Lo C M, et al. High-resolution quantitative phase-contrast microscopy by digital holography[J]. Optics Express, 2005, 13(22): 8693.

    [10] [10] Marquet P, Rappaz B, Magistretti P J, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Optics Letters, 2005, 30(5): 468.

    [11] [11] Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection[J]. Applied Optics, 2008, 47(4): A52.

    [12] [12] Kou S S, Waller L, Barbastathis G, et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3): 447-449.

    [13] [13] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Optics Express, 2013, 21(12): 14430-14441.

    [14] [14] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20): 24060-24075.

    [15] [15] Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Optics Letters, 2013, 38(18): 3538-3541.

    [16] [16] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5): 5346-5362.

    [17] [17] Pfeiffer F, Weitkamp T, Bunk O, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2(4): 258.

    [18] [18] Mehta S B, Sheppard C J R. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast[J]. Optics Letters, 2009, 34(13): 1924.

    [19] [19] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739.

    [20] [20] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22): 4845-4848.

    [21] [21] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7): 2376-2389.

    [22] [22] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18): 20724-20744.

    [23] [23] Sun J, Zuo C, Zhang L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations[J]. Scientific Reports, 2017, 7(1): 1187.

    [24] [24] Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9): 11394.

    [25] [25] Lee D, Ryu S, Kim U, et al. Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging[J]. Biomedical Optics Express, 2015, 6(12): 4912.

    [26] [26] Lee W, Choi J H, Ryu S, et al. Color-coded LED microscopy for quantitative phase imaging: Implementation and application to sperm motility analysis[J]. Methods, 2018, 136: 66-74.

    [27] [27] Fan Y, Sun J, Chen Q, et al. Wide-field anti-aliased quantitative differential phase contrast microscopy[J]. Optics Express, 2018, 26(19): 25129.

    [28] [28] Lee W, Jung D, Ryu S, et al. Single-exposure quantitative phase imaging in color-coded LED microscopy[J]. Optics Express, 2017, 25(7): 8398.

    [29] [29] Chen M, Tian L, Waller L. 3D differential phase contrast microscopy[C]//SPIE, 2016, 9718: 971826.

    [30] [30] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letters, 2014, 39(5): 1326.

    [31] [31] Zheng G, Kolner C, Yang C. Microscopy refocusing and dark-field imaging by using a simple LED array[J]. Optics Letters, 2011, 36(20): 3987.

    [32] [32] Zuo C, Sun J, Feng S, et al. Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement[J]. Optics and Lasers in Engineering, 2016, 78: 35-47.

    [33] [33] Iglesias I. Pyramid phase microscopy[J]. Optics Letters, 2011, 36(18): 3636.

    [34] [34] Zuo C, Sun J, Feng S, et al. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging[J]. Optics and Lasers in Engineering, 2016, 80: 24-31.

    [35] [35] Parthasarathy A B, Chu K K, Ford T N, et al. Quantitative phase imaging using a partitioned detection aperture[J]. Optics Letters, 2012, 37(19): 4062.

    [36] [36] Barankov R, Mertz J. Single-exposure surface profilometry using partitioned aperture wavefront imaging[J]. Optics Letters, 2013, 38(19): 3961.

    [37] [37] Iglesias I, Vargas-Martin F. Quantitative phase microscopy of transparent samples using a liquid crystal display[J]. Journal of Biomedical Optics, 2013, 18(2): 026015.

    [38] [38] Lu H, Chung J, Ou X, et al. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast[J]. Optics Express, 2016, 24(22): 25345.

    [39] [39] Ford T N, Chu K K, Mertz J. Phase-gradient microscopy in thick tissue with oblique back-illumination[J]. Nature Methods, 2012, 9(12): 1195-1197.

    [40] [40] Ford T N, Mertz J. Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy[J]. Journal of Biomedical Optics, 2013, 18(6): 066007.

    [41] [41] Jung D, Choi J H, Kim S, et al. Smartphone-based multi-contrast microscope using color-multiplexed illumination[J]. Scientific Reports, 2017, 7(1).

    [42] [42] Rose H. Nonstandard imaging methods in electron microscopy[J]. Ultramicroscopy, 1976, 2: 251.

    [43] [43] Bertero M, Boccacci P. Introduction to Inverse Problems in Imaging[M]. Florida: CRC Press, 1998.

    [44] [44] Lin Y Z, Huang K Y, Luo Y. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination[J]. Optics Letters, 2018, 43(12): 2973-2976.

    [45] [45] Chen H H, Lin Y Z, Luo Y. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging[J]. Journal of Biophotonics, 2018, 11(8): e201700364.

    [46] [46] Fan Y, Sun J, Chen Q, et al. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy[J]. arXiv preprint arXiv, 2019: 1903.10718.

    [47] [47] Li J, Chen Q, Sun J, et al. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy[J]. Optics Express, 2018, 26(21): 27599-27614.

    [48] [48] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Scientific Reports, 2017, 7(1): 7654.

    [49] [49] Kellman M, Bostan E, Repina N, et al. Physics-based learned design: optimized coded-Illumination for quantitative phase imaging[J]. IEEE Transactions on Computational Imaging, 2019: 1.

    [50] [50] Chen M, Phillips Z F, Waller L. Quantitative differential phase contrast (DPC) microscopy with computational aberration correction[J]. Optics Express, 2018, 26(25): 32888.

    [51] [51] Sun J, Chen Q, Zhang Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 2016, 24(14): 15765.

    [52] [52] Kellman M, Chen M, Phillips Z F, et al. Motion-resolved quantitative phase imaging[J]. Biomedical Optics Express, 2018, 9(11): 5456.

    [53] [53] Phillips Z F, Chen M, Waller L. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)[J]. PLOS ONE, 2017, 12(2): e0171228.

    [54] [54] Tian L, Liu Z, Yeh L H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2015, 2(10): 904.

    [55] [55] Sun J, Chen Q, Zhang J, et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography[J]. Optics Letters, 2018, 43(14): 3365.

    [56] [56] Majeed H, Sridharan S, Mir M, et al. Quantitative phase imaging for medical diagnosis[J]. Journal of Biophotonics, 2017, 10(2): 177-205.

    [57] [57] Brenner S. The genetics of Caenorhabditis elegans[J]. Genetics, 1974, 77(1): 71-94.

    [58] [58] Sheppard C, Shotton D, Sheppard C. Confocal Laser Scanning Microscopy[M]. Oxford: BIOS Scientific Publishers Ltd, 1997.

    [59] [59] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 2003, 21(11): 1369.

    [60] [60] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2(2): 104.

    [61] [61] Zuo C, Sun J, Li J, et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography[J]. arXiv preprint arXiv, 2019: 1904.09386.

    [62] [62] Horstmeyer R, Chung J, Ou X, et al. Diffraction tomography with Fourier ptychography[J]. Optica, 2016, 3(8): 827.

    [63] [63] Sung Y, Choi W, Fang-Yen C, et al. Optical diffraction tomography for high resolution live cell imaging[J]. Optics Express, 2009, 17(1): 266.

    Tools

    Get Citation

    Copy Citation Text

    Fan Yao, Chen Qian, Sun Jiasong, Zhang Zuxin, Lu Linpeng, Zuo Chao. Review of the development of differential phase contrast microscopy[J]. Infrared and Laser Engineering, 2019, 48(6): 603014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 特约专栏-“计算成像技术与应用”

    Received: Jan. 14, 2019

    Accepted: Feb. 13, 2019

    Published Online: Jul. 29, 2019

    The Author Email:

    DOI:10.3788/irla201948.0603014

    Topics