Acta Optica Sinica, Volume. 43, Issue 12, 1228007(2023)

Modeling of BRDF Characteristics of Deep Convective Cloud Based on Himawari-8 Satellite Imager

Weiwei Zhou1, Xiuqing Hu2,3、*, and Leiku Yang1
Author Affiliations
  • 1School of Survey and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
  • 2Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite;Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081,China
  • 3Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing 100081, China
  • show less
    References(25)

    [1] Chen L, Hu X Q, Xu N et al. Visible near-infrared radiometric calibration and tracking of meteorological satellite based on deep convective cloud target[C], 50-57(2011).

    [2] Dinguirard M, Slater P N. Calibration of space-multispectral imaging sensors[J]. Remote Sensing of Environment, 68, 194-205(1999).

    [3] Qing H X, Xiang Z Y, Mu Q K. In-flight radiometric calibration for VIR channels of FY-1C satellite sensor by using irradiance-based method[J]. National Remote Sensing Bulletin, 7, 458-464(2003).

    [4] Xiong X X, Barnes W. An overview of MODIS radiometric calibration and characterization[J]. Advances in Atmospheric Sciences, 23, 69-79(2006).

    [5] Xu N, Wu R H, Hu X Q et al. Integrated method for on-obit wide dynamic vicarious calibration of FY-3C MERSI reflective solar bands[J]. Acta Optica Sinica, 35, 1228001(2015).

    [6] Bhatt R, Doelling D, Wu A S et al. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets[J]. Remote Sensing, 6, 2809-2826(2014).

    [7] Hu X Q, Liu J J, Sun L et al. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors[J]. Canadian Journal of Remote Sensing, 36, 566-582(2010).

    [8] Xiong X X, Wu A S, Wenny B. Using Dome C for moderate resolution imaging spectroradiometer calibration stability and consistency[J]. Journal of Applied Remote Sensing, 3, 50-56(2009).

    [9] Masonis S J, Warren S G. Gain of the AVHRR visible channel as tracked using bidirectional reflectance of Antarctic and Greenland snow[J]. International Journal of Remote Sensing, 22, 1495-1520(2001).

    [10] Tan K, Wang X, Niu C et al. Vicarious calibration for the AHSI instrument of Gaofen-5 with reference to the CRCS Dunhuang test site[J]. IEEE Transactions on Geoscience and Remote Sensing, 1-11(2020).

    [11] Hu Y X, Wielicki B A, Yang P et al. Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly[J]. IEEE Transactions on Geoscience and Remote Sensing, 42, 2594-2599(2004).

    [12] Minnis P, Doelling D R, Nguyen L et al. Assessment of the visible channel calibrations of the VIRS on TRMM and MODIS on aqua and terra[J]. Journal of Atmospheric and Oceanic Technology, 25, 385-400(2008).

    [13] Doelling D R, Morstad D, Scarino B R et al. The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 1147-1159(2013).

    [14] Bhatt R, Doelling D R, Angal A et al. Characterizing response versus scan-angle for MODIS reflective solar bands using deep convective clouds[J]. Journal of Applied Remote Sensing, 11, 016014(2017).

    [15] Gong X Y, Li Z L, Li J et al. Monitoring the VIIRS sensor data records reflective solar band calibrations using DCC with collocated CrIS measurements[J]. Journal of Geophysical Research: Atmospheres, 124, 8688-8706(2019).

    [16] Bhatt R, Doelling D R, Scarino B R et al. Advances in utilizing tropical deep convective clouds as a stable target for on-orbit calibration of satellite imager reflective solar bands[J]. Proceedings of SPIE, 11127, 111271H(2019).

    [18] Li Z R, Li Y X, Liu Z L. High-precision BRDF measurement system in near infrared band[J]. Acta Optica Sinica, 42, 1212002(2022).

    [19] Zhang J Y, Ren J J, Li F et al. Adaptive structured light projection modulation method based on BRDF model[J]. Acta Optica Sinica, 41, 0912001(2021).

    [20] Sui C L, Tan Y, Zhang Y et al. Fiber evidence identification based on spectral bidirectional reflectance distribution function[J]. Acta Optica Sinica, 41, 0930001(2021).

    [21] Loeb N G, Kato S, Loukachine K et al. Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the earth's radiant energy system instrument on the terra satellite. part I: methodology[J]. Journal of Atmospheric and Oceanic Technology, 22, 338-351(2005).

    [23] Bhatt R, Doelling D, Scarino B et al. Development of seasonal BRDF models to extend the use of deep convective clouds as invariant targets for satellite SWIR-band calibration[J]. Remote Sensing, 9, 1061(2017).

    [24] Nicodemus F E, Richmond J C, Hsia J J et al[M]. Geometrical considerations and nomenclature for reflectance(1977).

    Tools

    Get Citation

    Copy Citation Text

    Weiwei Zhou, Xiuqing Hu, Leiku Yang. Modeling of BRDF Characteristics of Deep Convective Cloud Based on Himawari-8 Satellite Imager[J]. Acta Optica Sinica, 2023, 43(12): 1228007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Sep. 30, 2022

    Accepted: Nov. 30, 2022

    Published Online: Jun. 20, 2023

    The Author Email: Hu Xiuqing (huxq@cma.cn)

    DOI:10.3788/AOS221771

    Topics