Laser & Optoelectronics Progress, Volume. 60, Issue 17, 1700003(2023)

Research Progress of Mid-Infrared Supercontinuum and Its Coherence Based on Chalcogenide Fibers

Zhijian Wu1,2 and Xuefeng Peng2、*
Author Affiliations
  • 1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo , 315211Zhejiang , China
  • 2College of Science & Technology, Ningbo University, Ningbo , 315211Zhejiang , China
  • show less
    References(61)

    [1] Nguyen D M, Le S D, Lengle K et al. Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core chalcogenide fiber[J]. IEEE Photonics Technology Letters, 22, 1844-1846(2010).

    [2] Huang Z H, Hou J, Peng Y et al. Photonic crystal fiber surface plasmon resonance effect based on supercontinuum source[J]. High Power Laser and Particle Beams, 23, 11-15(2011).

    [3] Medjouri A, Abed D, Becer Z. Numerical investigation of a broadband coherent supercontinuum generation in Ga8Sb32S60 chalcogenide photonic crystal fiber with all-normal dispersion[J]. Opto-Electronics Review, 27, 1-9(2019).

    [4] Tremblay J É, Malinowski M, Richardson K A et al. Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides[J]. Optics Express, 26, 21358-21363(2018).

    [5] Diouf M, Wague A, Zghal M. Numerical investigation of an ultra-broadband coherent mid-infrared supercontinuum in a chalcogenide AsSe2-As2S5 multimaterial photonic crystal fiber[J]. Journal of the Optical Society of America B, 36, A8-A14(2019).

    [6] Li J L, Zhao F, Hui Z Q. Mid-infrared supercontinuum generation in dispersion-engineered highly nonlinear chalcogenide photonic crystal fiber[J]. Modern Physics Letters B, 33, 1950211(2019).

    [7] Zhao Z M, Shen J F, Wang X S. Progress in mid-infrared supercontinuum generation in chalcogenide fibers[J]. Journal of the Chinese Ceramic Society, 49, 1600-1608(2021).

    [8] Dai S X, Wang M, Wang Y Y et al. Review of mid-infrared supercontinuum spectrum generation based on chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 57, 071603(2020).

    [9] Lemière A, Bizot R, Désévédavy F et al. 1.7-18 µm mid-infrared supercontinuum generation in a dispersion-engineered step-index chalcogenide fiber[J]. Results in Physics, 26, 104397(2021).

    [10] Martinez R A, Plant G, Guo K W et al. Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers[J]. Optics Letters, 43, 296-299(2018).

    [11] Wang Y Y, Zhang N, Zhang P Q et al. Broadband and coherent supercontinuum generation in all-normal-dispersion double-clad Ge-As-Se-Te fiber taper[J]. Chinese Journal of Lasers, 49, 0101010(2022).

    [12] Wei D P, Galstian T V, Smolnikov I V et al. Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber[J]. Optics Express, 13, 2439-2443(2005).

    [13] Shaw L B, Thielen P A, Kung F H et al. IR supercontinuum generation in As-Se photonic crystal fiber[C], TuC5(2005).

    [14] Wu Z H, Xu Y S, Qi D F et al. Progress in preparation and applications of Te-As-Se chalcogenide glasses and fibers[J]. Infrared Physics & Technology, 102, 102981(2019).

    [15] Tang J Z, Liu S, Zhu Q D et al. As40S59Se1/As2S3 step index fiber for 1-5 μm supercontinuum generation[J]. Journal of Non-Crystalline Solids, 450, 61-65(2016).

    [16] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014).

    [17] Cheng T L, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 41, 2117-2120(2016).

    [18] You C Y, Dai S X, Zhang P Q et al. Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses[J]. Scientific Reports, 7, 6497(2017).

    [19] Zhu L, Yang D D, Wang L L et al. Optical and thermal stability of Ge-as-Se chalcogenide glasses for femtosecond laser writing[J]. Optical Materials, 85, 220-225(2018).

    [20] Liang X L, Jiao K, Wang X G et al. Ultra-high germanium-contained Se-chalcogenide glass fiber for mid-infrared[J]. Infrared Physics & Technology, 104, 103112(2020).

    [21] Zhou W J, Ma W Q, Li R et al. Femtosecond laser damage characteristics of Ge-As-Se-Te chalcogenide glass[J]. Infrared and Laser Engineering, 51, 20210222(2022).

    [22] Yu Y, Zhang B, Gai X et al. 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power[J]. Optics Letters, 40, 1081-1084(2015).

    [23] Tian K Z, Hu Y S, Ren H et al. Ge-As-S chalcogenide glass fiber with high laser damage threshold and mid-infrared supercontinuum generation[J]. Acta Physica Sinica, 70, 047801(2021).

    [24] Feng Z, Wang J, Wu G L et al. Arsenic-free low-loss sulfide glass fiber for mid-infrared supercontinuum generation[J]. Infrared Physics & Technology, 113, 103618(2021).

    [25] Hu Y S, Tian K Z, Li T T et al. Mid-infrared nonlinear optical performances of Ge-Sb-S chalcogenide glasses[J]. Optical Materials Express, 11, 695-706(2021).

    [26] Zhang B, Yu Y, Zhai C C et al. High brightness 2.2-12 μm mid‐infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber[J]. Journal of the American Ceramic Society, 99, 2565-2568(2016).

    [27] Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 11, 1700005(2017).

    [28] Hossain S, Shah S, Faisal M. Ultra-high birefringent, highly nonlinear Ge20Sb15Se65 chalcogenide glass photonic crystal fiber with zero dispersion wavelength for mid-infrared applications[J]. Optik, 225, 165753(2021).

    [29] Monro T M, West Y D, Hewak D W et al. Chalcogenide holey fibres[J]. Electronics Letters, 36, 1998-2000(2000).

    [30] Nguyen H P T, Tuan T H, Xing L et al. Supercontinuum generation in a chalcogenide all-solid hybrid microstructured optical fiber[J]. Optics Express, 28, 17539-17555(2020).

    [31] Medjouri A, Abed D. Modelling of all-chalcogenide all-normal dispersion photonic crystal fiber for ultraflat mid-infrared supercontinuum generation[J]. Optical and Quantum Electronics, 53, 399(2021).

    [32] Møller U, Yu Y, Kubat I et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[J]. Optics Express, 23, 3282-3291(2015).

    [33] Lê Cảnh T, Hoang V T, Le H et al. Supercontinuum generation in all-normal dispersion suspended core fiber infiltrated with water[J]. Optical Materials Express, 10, 1733-1748(2020).

    [34] Islam A S M T U, Ahmad R, Hossen I et al. Wideband mid-infrared supercontinuum generation in chloroform filled suspended core fiber[C](2020).

    [35] Jiao K, Wang X G, Liang X L et al. Single-mode suspended large-core chalcohalide fiber with a low zero-dispersion wavelength for supercontinuum generation[J]. Optics Express, 30, 641-649(2021).

    [36] Mouawad O, Kedenburg S, Steinle T et al. Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers[J]. Applied Physics B, 122, 177(2016).

    [37] Saini T S, Nguyen H P T, Luo X et al. Broadband high-power mid-IR supercontinuum generation in tapered chalcogenide step-index optical fiber[J]. OSA Continuum, 2, 1652-1666(2019).

    [38] Zhang N, Peng X F, Wang Y Y et al. Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion[J]. Optics Express, 27, 10311-10319(2019).

    [39] Leonov S O, Wang Y C, Shiryaev V S et al. Coherent mid-infrared supercontinuum generation in tapered suspended-core As39Se61 fibers pumped by a few-optical-cycle Cr∶ZnSe laser[J]. Optics Letters, 45, 1346-1349(2020).

    [40] Shamim M H M, Alamgir I, Correr W et al. Mid-infrared soliton self-frequency shift in a cascade of silica, fluoride, and chalcogenide fibers[C], ITh2B. 8(2022).

    [41] Yao J M, Zhang B, Yin K et al. Mid-infrared supercontinuum generation in step-index As2S3 fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source[J]. Optics Express, 24, 15093-15100(2016).

    [42] Gattass R R, Shaw L B, Nguyen V Q et al. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 18, 345-348(2012).

    [43] Kubat I, Petersen C R, Møller U V et al. Thulium pumped mid-infrared 0.9-9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers[J]. Optics Express, 22, 3959-3967(2014).

    [44] Robichaud L R, Duval S, Pleau L P et al. High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source[J]. Optics Express, 28, 107-115(2020).

    [45] Yao J M, Zhang B, Hou J. 2.3-9.5 μm all-fiber mid-infrared supercontinuum source[J]. Chinese Journal of Lasers, 47, 1216002(2020).

    [46] Swiderski J, Grzes P. High-power mid-IR supercontinuum generation in fluoroindate and arsenic sulfide fibers pumped by a broadband 1.9-2.7 μm all-fiber laser source[J]. Optics & Laser Technology, 141, 107178(2021).

    [47] Yan B, Huang T, Zhang W et al. Generation of Watt-level supercontinuum covering 2-6.5 µm in an all-fiber structured infrared nonlinear transmission system[J]. Optics Express, 29, 4048-4057(2021).

    [48] Yang L L, Wang Y Y, Jiao K et al. High-coupling efficiency and robust fusion splicing between fluorotellurite and chalcogenide fibers[J]. Infrared Physics & Technology, 122, 104075(2022).

    [49] Petersen C R, Moselund P M, Petersen C et al. Spectral-temporal composition matters when cascading supercontinua into the mid-infrared[J]. Optics Express, 24, 749-758(2016).

    [50] Petersen C R, Lotz M B, Woyessa G et al. Nanoimprinting and tapering of chalcogenide photonic crystal fibers for cascaded supercontinuum generation[J]. Optics Letters, 44, 5505-5508(2019).

    [51] Venck S, St-Hilaire F, Brilland L et al. 2-10 µm mid-infrared fiber-based supercontinuum laser source: experiment and simulation[J]. Laser & Photonics Reviews, 14, 2000011(2020).

    [52] Medjouri A, Abed D. Design and modelling of all-normal dispersion As39Se61 chalcogenide photonic crystal fiber for flat-top coherent mid-infrared supercontinuum generation[J]. Optical Fiber Technology, 50, 154-164(2019).

    [53] Godin T, Combes Y, Ahmad R et al. Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires[J]. Optics Letters, 39, 1885-1888(2014).

    [54] Khamis M A, Sevilla R, Ennser K. Design of W-type index chalcogenide fiber for highly coherent mid-IR supercontinuum generation[J]. Journal of Lightwave Technology, 36, 5388-5394(2018).

    [55] Xiao J, Tian Y M, Zhao Z M et al. Investigation of tellurium-based chalcogenide double-clad fiber for coherent mid-infrared supercontinuum generation[J]. Optical Fiber Technology, 55, 102144(2020).

    [56] Medjouri A, Abed D. Theoretical study of coherent supercontinuum generation in chalcohalide glass photonic crystal fiber[J]. Optik, 219, 165178(2020).

    [57] Yuan Y, Yang P L, Peng X F et al. Ultrabroadband and coherent mid-infrared supercontinuum generation in all-normal dispersion Te-based chalcogenide all-solid microstructured fiber[J]. Journal of the Optical Society of America B, 37, 227-232(2020).

    [58] Xiao K, Ye Y, Min R. Broadband coherent mid-infrared supercontinuum generation in all-chalcogenide microstructured fiber with all-normal dispersion[J]. Frontiers in Physics, 577(2022).

    [59] Tong H T, Koumura A, Nakatani A et al. Chalcogenide all-solid hybrid microstructured optical fiber with polarization maintaining properties and its mid-infrared supercontinuum generation[J]. Optics Express, 30, 25433-25449(2022).

    [60] Li G T, Peng X F, Dai S X et al. Highly coherent 1.5–8.3 μm broadband supercontinuum generation in tapered As-S chalcogenide fibers[J]. Journal of Lightwave Technology, 37, 1847-1852(2019).

    [61] Saini T S, Tuan T H, Suzuki T et al. Coherent mid-IR supercontinuum generation using tapered chalcogenide step-index optical fiber: experiment and modelling[J]. Scientific Reports, 10, 2236(2020).

    Tools

    Get Citation

    Copy Citation Text

    Zhijian Wu, Xuefeng Peng. Research Progress of Mid-Infrared Supercontinuum and Its Coherence Based on Chalcogenide Fibers[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 12, 2022

    Accepted: Sep. 13, 2022

    Published Online: Sep. 1, 2023

    The Author Email: Peng Xuefeng (pengxuefeng@nbu.edu.cn)

    DOI:10.3788/LOP222260

    Topics