Optical Communication Technology, Volume. 45, Issue 11, 45(2021)
Methods for production of quantum entanglement sources
[1] [1] EKERT A K. Quantum cryptography based on Bell's theorem[J]. Physical Review Letters, 1991, 67(6): 661-664.
[2] [2] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390: 575-579.
[3] [3] FINK M, STEINLECHNER F, HANDSTEINER J, et al. Entanglement-enhanced optical gyroscope[J]. New Journal of Physics, 2019, 21: 053010-1-053010-7.
[4] [4] LEE J, SHEN L, CERE A, et al. Symmetrical clock synchronization with time-correlated photon pairs[J]. Applied Physics Letters, 2019, 114(10): 101102-1-101102-4.
[5] [5] MAGDE D, MAHR H. Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000[J]. Physical Review Letters, 1967, 18(21): 905-907.
[6] [6] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046.
[7] [7] SHIH Y H, ALLEY C O. New Type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion[J]. Physical Review Letters, 1988, 61(26): 2921-2924.
[8] [8] SHIH Y H, SERGIENKO A V, RUBIN M H, et al. Two-photon entanglement in type-II parametric down-conversion[J]. Physical Review A, 1994, 50(1): 23-28.
[9] [9] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarization-entangled photons[J]. Physical Review A, 1999, 60(2): R773-R776.
[10] [10] SONG X B, XU D Q, WANG H B, et al. Experimental observation of one-dimensional quantum holographic imaging[J]. Applied Physics Letters, 2013, 103(13): 131111-1-131111-4.
[14] [14] LASOTA M, KOLENDERSKI P. Optimal photon pairs for quantum communication protocols[EB/OL].[2021-01-21]. https://www.nature.com/articles/s41598-020-77662-2.
[15] [15] WU S, ZHANG D J, YANG H, et al. Quantum interference inside a nonlinear crystal with spontaneous parametric down-conversion[J]. Optics Communications, 2020, 463: 125379-1-125379-5.
[16] [16] ARMSTRONG J A. Interactions between light waves in a nonlinear dielectric[J]. Phys Rev, 1962, 127: 1918-1939.
[17] [17] FIORENTINO M, MESSIN G, KUKLEWICZ C E, et al. Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints[J]. Physical Review A, 2004, 69(4): 41801-1-41801-4.
[18] [18] FIORENTINO M, KUKLEWICZ C E, WONG F N C. Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones[J]. Optics Express, 2005, 13(1): 127-135.
[19] [19] PIRES H D L, EXTER M P V. Near-field correlations in the two-photon field[J]. Physical Review A, 2009, 80(5): 1-2.
[20] [20] DI L P H, VAN EXTER M P. Observation of near-field correlations in spontaneous parametric down-conversion[J]. Physical Review A, 2009, 79(4): 126-136.
[22] [22] KIM H, KWON O, MOON H S. Pulsed Sagnac source of polarization-entangled photon pairs in telecommunication band[J]. Scientific Reports, 2019, 9(1): 5031-1-5031-7.
[23] [23] KUMAR R, GHOSH J. SPDC photon pairs using a spatially anti-symmetric pump beam in a ppLN ridge waveguide[J]. Applied Physics B, 2020, 126(11): 186-1-186-11.
[24] [24] ELKUS B S, ABDELSALAM K, FATHPOUR S, et al. Quantum-correlated photon-pair generation via cascaded nonlinearity in an ultra-compact lithium-niobate nano-waveguide[J]. Optics Express, 2020, 28(26): 39963-39975.
[25] [25] LOHRMANN A, PERUMANGATT C, VILLAR A, et al. Broadband pumped polarization entangled photon-pair source in a linear beam displacement interferometer[J]. Applied Physics Letters, 2020, 116(2): 021101-1-021101-4.
[26] [26] KUMAR R, YADAV V K. Postselection-free, hyperentangled photon pairs in a periodically poled lithium-niobate ridge waveguide[J]. Physical Review A, 2020, 102(3): 033722-1-033722-6.
[27] [27] KOLOBOV M I, FABRE C. Quantum Limits on Optical Resolution[J]. Phys.rev.lett, 2000, 85(18): 3789-3792.
[28] [28] MOSSET A, DEVAUX F, LANTZ E. Spatially noiseless optical amplification of images[J]. Physical Review Letters, 2005, 94(22): 223603-1-223603-4.
[29] [29] LEE J C, PARK K K, ZHAO T M, et al. Einstein-podolsky-rosen entanglement of narrow-band photons from cold atoms[J]. Physical Review Letters, 2016, 117(25): 250501-1-250501-5.
[30] [30] BOYER V, ALBERTO M, POOSER R, et al. Entangled images from four-wave mixing[J]. Science, 2008, 321: 544-547.
[31] [31] QIN Z, JING J, ZHOU J, et al. Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor[J]. Optics Letters, 2012, 37(15): 3141-3143.
[32] [32] DING D S, ZHOU Z Y, SHI B S, et al. Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment[J]. Optics Express, 2012, 20(10): 11433-11444.
[33] [33] SHU C, CHEN P, CHOW T K A, et al. Subnatural-linewidth biphotons from a doppler-broadened hot atomic vapor cell[J]. Nature Communication. 2016(7): 12783-1-12783-5.
[34] [34] LEE G H, IHN Y S, LEE A, et al. Nonlocal two-photon interference of energy-time entangled photon pairs generated in Doppler-broadened ladder-type Rb 87 atoms[J]. Physical Review A, 2019, 100(5): 053817-1-053817-4.
[36] [36] FANG Y, JING J. Quantum squeezing and entanglement from a two-mode phase-sensitive amplifier via four-wave mixing in rubidium vapor[J]. New Journal of Physics, 2015, 17(2): 023027-1-023027-11.
[37] [37] WANG H, ZHAN Z, WANG Y, et al. Generation of tripartite entanglement from cascaded four-wave mixing processes[J]. Optics Express, 2016, 24: 23459-1-23459-10.
[38] [38] LV S, JING J. Generation of quadripartite entanglement from cascaded four-wave-mixing processes[J]. Physical Review A, 2017, 96(4): 043873-1-043873-7.
[39] [39] LIU S, LOU Y, JING J. Interference-induced quantum squeezing enhancement in a two-beam phase-sensitive amplifier[J]. Physical Review Letters, 2019, 123(11): 113602-1-113602-6.
[40] [40] LI S, PAN X, REN Y, et al. Deterministic generation of orbital-angular-momentum multiplexed tripartite tntanglement[J]. Physical Review Letters, 2020, 124(8): 083605-1-083605-7.
[41] [41] ZHANG K, WANG W, LIU S, et al. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing processes[J]. Physical Review Letters, 2020, 124(9): 090501-1-090501-6.
[42] [42] FIORENTINO M, VOSS P L, SHARPING J E, et al. All-fiber photon-pair source for quantum communications[J]. IEEE Photonics Technology Letters, 2002, 14(7): 983-985.
[43] [43] LI X Y, CHEN J, VOSS P, et al. All-fiber photon-pair source for quantum communications: Improved generation of correlated photons[J]. Optics Express, 2004, 12(16): 3737-3744.
[44] [44] LI X Y, VOSS P L, SHARPING J E, et al. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band[J]. Physical Review Letters, 2005, 94(5): 053601-1-053601-4.
[45] [45] LI X Y, YANG L, CUI L, et al. Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing[J]. Optics Letters, 2008, 33(6): 593-597.
[46] [46] GUO X S, LI X, Liu N, et al. An all-fiber source of pulsed twin beams for quantum communication[J]. Applied Physics Letters, 2012, 101(26): 261111-1-261111-5.
[49] [49] RIAZI A, CHEN C, ZHU E Y, et al. Biphoton shaping with cascaded entangled-photon sources[J]. NPJ Quantum Information, 2019, 5(1): 77-1-77-10.
[50] [50] FANG B, MENOTTI M, LISCIDINI M, et al. Three-photon discrete-energy-entangled W state in optical fiber[J]. Physical Review Letters, 2019, 123(7): 070508-1-070508-6.
[51] [51] FENG L T, ZHANG M, ZHOU Z Y, et al. Generation of a frequency-degenerate four-photon entangled state using a silicon nanowire[J]. Quantum Information, 2019(5): 90-1-90-7.
[52] [52] LU X, LI Q, WESTLY D A, et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication[J]. Nature Physics, 2019, 15(4): 374-384.
[53] [53] SUGIURA K, YIN Z, OKAMOTO R, et al. Broadband generation of photon-pairs from a CMOS compatible device[J]. Applied Physics Letters, 2020, 116(22): 224001-1-224001-5.
[55] [55] WALTHER P, PAN J W, ASPELMEYER M, et al. De Broglie wavelength of a non-local four-photon state[J]. Nature, 2004, 429: 158-161.
[56] [56] NAGATA T, OKAMOTO R, O'BRIEN J L, et al. Beating the standard quantum limit with four-entangled photons[J]. Science, 2007, 316: 726-729.
[57] [57] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390: 575-579.
[58] [58] PAN J W, BOUWMEESTER D, WEINFURTER H, et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Physical Review Letters, 1998, 80(18): 3891-3894.
[59] [59] SPRING J B, METCALF B J, HUMPHREYS P C, et al. Boson sampling on a photonic chip[J]. Science, 2013, 339: 798-801.
[60] [60] BROOME M A, FEDRIZZI A, RAHIMI-KESHARI S, et al. Photonic boson sampling in a tunable circuit[J]. Science, 2013, 339: 794-798.
[61] [61] ASPURU-GUZIK A, WALTHER P. Photonic quantum simulators[J]. Nature Physics, 2014, 8(4): 285-291.
[62] [62] SENELLART P, SOLOMON G, WHIT A. High-performance semiconductor quantum-dot single-photon sources[J]. Nature Nanotechnology, 2017, 12(11): 1026-1039.
[63] [63] WANG Z M, LIANG B L, SABLON K A, et al. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100)[J]. Applied Physics Letters, 2007, 90(11): 113120-1-113120-3.
[64] [64] HUBER D, REINDL M, HUO Y, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots[J]. Nature Communications, 2017, 8: 15506-15513.
[65] [65] HUBER D, REINDL M, FILIPE C D S S, et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand[J]. Physical Review Letters, 2018, 121(3): 033902-1-033902-6.
[66] [66] CHEN Y, ZOPF M, KEIL R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna[J]. Nature Communications, 2018, 9: 2994-3001.
[67] [67] LIU J, SU R, WEI Y, et al. A solid-state entangled photon pair source with high brightness and indistinguishability[J]. Nature Nanotechnology, 2019, 14(6): 586-594.
[68] [68] WANG H, HU H, CHUNG T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability[J]. Physical Review Letters, 2019, 122(11): 113602-1-113602-6.
[69] [69] MANNA S, HUANG H, SILVA S F C D, et al. Surface passivation and oxide encapsulation to improve optical properties of a single GaAs quantum dot close to the surface[J]. Applied Surface Science, 2020, 532: 147360-147367.
[70] [70] ROTA M B, BASSET F B, TEDESCHI D, et al. Entanglement teleportation with photons from quantum dots: towards a solid-state based quantum network[EB/OL]. [2021-01-21]. https://ieeexplore.ieee.org/document/9057405.
[71] [71] REINDL M, HUBER D, SCHIMPF C, et al. All-photonic quantum teleportation using on-demand solid-state quantum emitters[J]. Science Advances, 2018, 4(12): eaau1255-1-eaau1255-7.
[72] [72] BASSET F B, ROTA M B, SCHIMPF C, et al. Entanglement swapping with photons generated on-demand by a quantum dot[J]. Physical Review Letters, 2019, 123(16): 160501-160506.
Get Citation
Copy Citation Text
WANG Wunan, WANG Hailong, SHI Yan, ZHAO Chunliu, CHEN Jun, ZHAO Tianqi, JIN Shangzhong. Methods for production of quantum entanglement sources[J]. Optical Communication Technology, 2021, 45(11): 45
Category:
Received: Jan. 21, 2021
Accepted: --
Published Online: Dec. 25, 2021
The Author Email: