Optics and Precision Engineering, Volume. 31, Issue 6, 936(2023)

Bone scintigraphic classification method based on ACGAN and transfer learning

Hong YU1,*... Renze LUO1, Chunmeng CHEN2, Xiang TANG3 and Renquan LUO1 |Show fewer author(s)
Author Affiliations
  • 1College of Electrical Engineering and Information,Southwest Petroleum University, Chengdu60500, China
  • 2Department of Nuclear Medicine, The No. People’s Hospital of Yibin, Yibin644000, China
  • 3College of Computer Science, Southwest Petroleum University, Chengdu610500, China
  • show less
    References(23)

    [1] J X FENG, J JIANG. Deep learning-based chest CT image features in diagnosis of lung cancer. Computational and Mathematical Methods in Medicine, 2022, 4153211(2022).

    [2] [2] 2张永平, 兰朋训, 周兆霞. MRI和骨显像诊断骨转移瘤的临床价值分析[J]. 医学影像学杂志, 2017, 27(10): 2040-2042.ZHANGY P, LANP X, ZHOUZH X. Clinical value of MRI and bone scintigraphy in the diagnosis of bone metastases[J]. Journal of Medical Imaging, 2017, 27(10): 2040-2042.(in Chinese)

    [3] M T MADSEN. Recent advances in SPECT imaging. Journal of Nuclear Medicine: Official Publication, 48, 661-673(2007).

    [4] M SADIK, I HAMADEH, P NORDBLOM et al. Computer-assisted interpretation of planar whole-body bone scans. J Nucl Med, 49, 1958-1965(2008).

    [5] A ASLANTAS, E DANDIL, S SAǦLAM et al. CADBOSS: a computer-aided diagnosis system for whole-body bone scintigraphy scans. Journal of Cancer Research and Therapeutics, 12, 787-792(2016).

    [6] M ANTONINA. Object-oriented classification approach for bone metastasis mapping from whole-body bone scintigraphy. Physica Medica, 84, 141-148(2021).

    [7] F G ELFARRA, M A CALIN, S V PARASCA. Computer-aided detection of bone metastasis in bone scintigraphy images using parallelepiped classification method. Annals of Nuclear Medicine, 33, 866-874(2019).

    [8] Z Y WANG, X T WEN, Y H LU et al. Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases. Oncotarget, 7, 12612-12622(2016).

    [9] L M LU, C L ZHANG, K CAO et al. A multichannel CNN-GRU model for human activity recognition. IEEE Access, 10, 66797-66810(2022).

    [10] Z W ZHENG, L X LIU, X Y CHEN et al. Construction of Bisection Model of SPECT Bone Scan Image Based on VGGNet, 150-154(2021).

    [11] N PAPANDRIANOS, E PAPAGEORGIOU, A ANAGNOSTIS et al. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application. PLoS One, 15(2020).

    [12] C NTAKOLIA, D E DIAMANTIS, N PAPANDRIANOS et al. A lightweight convolutional neural network architecture applied for bone metastasis classification in nuclear medicine: a case study on prostate cancer patients. Healthcare, 8, 493(2020).

    [13] Q LIN, C G CAO, T T LI et al. dSPIC: a deep SPECT image classification network for automated multi-disease, multi-lesion diagnosis. BMC Medical Imaging, 21, 122(2021).

    [14] B ABDOLLAHI, N TOMITA, S HASSANPOUR. Data augmentation in training deep learning models for medical image analysis. Intelligent Systems Reference Library, 167-180(2020).

    [15] KORA PADMAVATHI. Transfer learning techniques for medical image analysis: a review. Biocybernetics and Biomedical Engineering, 42, 79-107(2022).

    [16] ZIA TEHSEEN. VANT-GAN: adversarial learning for discrepancy-based visual attribution in medical imaging. Pattern Recognition Letters, 156, 112-118(2022).

    [17] C M WU, Z ZENG. A fault diagnosis method based on Auxiliary Classifier Generative Adversarial Network for rolling bearing. PLoS One, 16(2021).

    [18] O RONNEBERGER, P FISCHER, T BROX. U-net: convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science, 234-241(2015).

    [19] Q B HOU, D Q ZHOU, J S FENG. Coordinate Attention for Efficient Mobile Network Design, 13708-13717(2021).

    [20] J XU, J WANG, X XU et al. Image recognition for different developmental stages of rice by RAdam deep convolutional neural networks. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 37, 143-150(2021).

    [21] A HOWARD, M SANDLER, B CHEN et al. Searching for MobileNetV3, 1314-1324.

    [22] K LIU, S T YU, S D LIU. An improved InceptionV3 network for obscured ship classification in remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4738-4747(2020).

    [23] M TAN, Q V LE. EfficientNet: Rethinking Model Scaling for Convolution Neural Networks, 6105-6114(2019).

    Tools

    Get Citation

    Copy Citation Text

    Hong YU, Renze LUO, Chunmeng CHEN, Xiang TANG, Renquan LUO. Bone scintigraphic classification method based on ACGAN and transfer learning[J]. Optics and Precision Engineering, 2023, 31(6): 936

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jul. 19, 2022

    Accepted: --

    Published Online: Apr. 4, 2023

    The Author Email: YU Hong (790622472@qq.com)

    DOI:10.37188/OPE.20233106.0936

    Topics