Laser & Optoelectronics Progress, Volume. 57, Issue 13, 131204(2020)

Analysis of Passive Athermalization Structure Design and Integrated Opto-Mechanical-Thermal of Zoom Lens of Photoelectric Countermeasure Platform

Weifeng Du1、*, Yongzhi Liu2, Wenjie Gao1, and Xiongchao Hu1
Author Affiliations
  • 1Optical Navigation and Detection Division, Shanghai Aerospace Control Technology Institute, Shanghai 200233, China
  • 2Military Representative Office Rocket Army Equipment Department in Tianjin Area, Tianjin 300308, China
  • show less
    Figures & Tables(22)
    Schematic diagram of zoom optical system. (a) EFFL is 19 mm; (b) EFFL is 35 mm; (c) EFFL is 50 mm; (d) EFFL is 100 mm;
    MTF curves for multiple focal length configuration. (a) EFFL is 19 mm; (b) EFFL is 35 mm; (c) EFFL is 50 mm; (d) EFFL is 100 mm
    Opto-mechanical structure of zoom lens
    Finite element model of zoom lens
    Rigid body displacement cloud diagram of the zoom lens at temperature of -20 ℃. (a) Front fixed group; (b) zoom group; (c) compensation group; (d) posterior fixation group; (e) machine
    Initial structural design of rear fixed component
    Fixed group structure design with flexible pressure ring structure
    Key structure parameters of flexible pressure ring. (a) Pressure ring;(b) space ring
    Finite element model of rear fixed component adopted flexible pressure ring
    Displacement cloud diagram of real fixed group athermalization with flexible pressure ring
    Variation of thermoelastic axial rigid body displacement with temperature
    Optical MTF curve of zoom lens. (a) Temperature is -20 ℃, EFFL is 99 mm; (b) temperature is 50 ℃, EFFL is 99 mm; (c) temperature is -20 ℃, EFFL is 50 mm; (d) temperature is 50 ℃, EFFL is 50 mm; (e) temperature is -20 ℃, EFFL is 19 mm; (f) temperature is 50 ℃, EFFL is 19 mm
    Curve of wavefront difference with temperature. (a) Curve of PV with temperature; (b) curve of RMS with temperature
    Experimental platform for reliability of optical equipment temperature stress
    Image of resolution board. (a) 20 ℃; (b) -20 ℃; (b) 50 ℃
    • Table 1. Material parameters of the lens

      View table

      Table 1. Material parameters of the lens

      MaterialElastic modulus /MPaDensity /(10-6 kg·mm-3)Poisson's ratioCoefficient oflinear expansion /(10-6 ℃)
      Titanium alloy114000.004.400.298.90
      RTV701.001.280.47236.00
      ZF5253730.005.530.258.90
      QK763550.002.390.269.30
      LAK984340.004.020.297.60
      ZK989960.003.750.287.20
      ZF652350.004.770.259.20
      ZF5058990.003.970.258.70
      H-LAK388730.003.870.297.90
      ZF7L55000.004.970.248.90
    • Table 2. Correspondence between Zernike polynomial and Sediel aberration

      View table

      Table 2. Correspondence between Zernike polynomial and Sediel aberration

      OrderPolynomialPhysicalmeaningDiagramform
      11migration
      2ρcos θX tilt
      3ρsin θY tilt
      42ρ2-1defocus
      5ρ2cos 2θ0° or 90° astigmatism
      6ρ2sin 2θ±45° astigmatism
      7(3ρ3-2ρ)cos θX coma
    • Table 3. Variation of rigid body displacement / rotation of telephoto zoom lens

      View table

      Table 3. Variation of rigid body displacement / rotation of telephoto zoom lens

      Serial numberT1T2T3R1R2R3
      15.524×10-77.332×10-73.752×10-45.770×10-91.162×10-87.992×10-8
      22.157×10-74.826×10-75.523×10-56.627×10-94.157×10-96.604×10-8
      36.687×10-75.542×10-77.775×10-54.423×10-95.514×10-94.607×10-8
      ……
      228.814×10-67.775×10-67.154×10-31.283×10-82.176×10-91.451×10-9
      236.523×10-63.351×10-55.183×10-35.073×10-94.518×10-92.951×10-9
      247.704×10-64.218×10-65.172×10-39.153×10-91.357×10-99.843×10-8
      254.056×10-66.450×10-66.107×10-38.423×10-91.543×10-94.862×10-8
    • Table 4. Material parameters of the flexible pressure ring of the rear fixed component

      View table

      Table 4. Material parameters of the flexible pressure ring of the rear fixed component

      MaterialElastic modulus /MPaDensity /10-6 (kg·mm-3)Poisson's ratioCoefficient of linearexpansion /10-6
      Beryllium copper1320008.420.3316.88
      SUS3061870008.130.3123.70
    • Table 5. Zernike coefficient of each mirror in the anterior fixation group at temperature of -20 ℃

      View table

      Table 5. Zernike coefficient of each mirror in the anterior fixation group at temperature of -20 ℃

      SerialnumberFirst lensSecond lensThird lens
      First surfaceSecond surfaceFirst surfaceSecond surfaceFirst surfaceSecond surface
      1-7.08×10-4-6.93×10-4-3.11×10-4-3.08×10-44.62×10-4-3.79×10-4
      25.68×10-43.16×10-42.93×10-44.28×10-4-1.84×10-3-2.64×10-3
      3-7.92×10-4-8.31×10-4-0.93×10-3-8.99×10-43.99×10-39.13×10-4
      4-2.27×10-3-3.68×10-34.47×10-48.52×10-4-8.87×10-61.08×10-5
      5-7.22×10-4-5.44×10-47.78×10-56.92×10-41.81×10-62.53×10-6
      66.99×10-43.59×10-4-5.19×10-5-3.15×10-5-1.01×10-61.18×10-6
      74.42×10-34.40×10-31.49×10-43.44×10-4-1.51×10-5-5.61 ×10-5
      81.09×10-39.93×10-4-4.00×10-5-3.46×10-5-5.83×10-5-4.68×10-5
      97.62×10-48.52×10-46.47×10-66.19×10-6-3.23×10-5-4.03×10-5
    • Table 6. Zernike coefficient of each mirror in the anterior fixation group at temperature of 50 ℃

      View table

      Table 6. Zernike coefficient of each mirror in the anterior fixation group at temperature of 50 ℃

      SerialnumberFirst lensSecond lensThird lens
      Second surfaceFirst surfaceSecond surfaceSecond surfaceFirst surfaceSecond surface
      1-0.18×10-3-0.26×10-3-6.23×10-4-1.09×10-31.40×10-52.16×10-7
      2-2.20×10-44.37×10-5-8.73×10-4-4.77×10-4-2.29×10-3-3.33×10-4
      35.62×10-57.10×10-5-8.88×10-42.24×10-3-8.25×10-5-4.47×10-6
      4-3.31×10-3-1.89×10-3-6.62×10-64.47×10-6-2.29×10-4-1.06×10-5
      52.57×10-68.36×10-5-6.66×10-5-7.80×10-4-8.88×10-7-6.63×10-7
      6-2.52×10-5-2.76×10-5-2.77×10-5-4.42×10-53.77×10-5-1.52×10-6
      7-8.62×10-3-8.47×10-3-3.97×10-6-4.43×10-67.96×10-5-1.47×10-6
      8-3.33×10-3-4.82×10-42.64×10-51.58×10-55.51×10-75.39×10-7
      95.97×10-41.62×10-4-7.64×10-6-1.27×10-6-7.04×10-7-2.28×10-7
    • Table 7. Seidel aberration coefficient at temperature load of -20 ℃ and 50 ℃

      View table

      Table 7. Seidel aberration coefficient at temperature load of -20 ℃ and 50 ℃

      Seidel coefficientZernike polynomialValue (-20 ℃)Value (50 ℃)
      apiston2Z1-Z4+Z91+4ε2+ε4(1-ε2)2-5.70×10-3-6.33×10-3
      atilt_x2Z2(1+ε2)12-2Z7(1+ε2+ε4)(1-ε2)[(1+ε2)(1+4ε2+ε4)]121.08×10-3-8.53×10-4
      atilt_y2Z2(1+ε2)12-2Z8(1+ε2+ε4)(1-ε2)[(1+ε2)(1+4ε2+ε4)]12-1.54×10-4-1.00×10-3
      adefocus2[2Z4/(1-ε2)-6Z9(1+ε2)/(1-ε2)2]5.79×10-31.72×10-3
      asa12Z9/(1-ε2)22.82×10-32.21×10-3
      acoma_x6(1+ξ2)Z7(1-ξ2)(1+ξ2)(1+4ξ2+ξ4)6.68×10-45.36×10-4
      acoma_y6(1+ξ2)Z8(1-ξ2)(1+ξ2)(1+4ξ2+ξ4)7.59×10-45.18×10-4
    Tools

    Get Citation

    Copy Citation Text

    Weifeng Du, Yongzhi Liu, Wenjie Gao, Xiongchao Hu. Analysis of Passive Athermalization Structure Design and Integrated Opto-Mechanical-Thermal of Zoom Lens of Photoelectric Countermeasure Platform[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131204

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jun. 5, 2019

    Accepted: Oct. 18, 2019

    Published Online: Jul. 9, 2020

    The Author Email: Du Weifeng (dwfhiter@163.com)

    DOI:10.3788/LOP57.131204

    Topics