High Power Laser Science and Engineering, Volume. 7, Issue 1, 01000e11(2019)

High efficiency second harmonic generation of nanojoule-level femtosecond pulses in the visible based on BiBO

Mario Galletti1,2, Hugo Pires1, Victor Hariton1, Celso Paiva João1, Swen Künzel1, Marco Galimberti2, and Gonçalo Figueira1
Author Affiliations
  • 1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
  • 2Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
  • show less
    Figures & Tables(12)
    Experimental setup in SHG experiment. $\unicode[STIX]{x1D706}/2,\unicode[STIX]{x1D706}/4$: waveplates; EC: pump energy control; FL: focusing lens; C: nonlinear crystal; CL: collimating lens; DM: dichroic mirror; FM: flip mirror; SM: spectrometer; CAM: camera; PM: power meter; SA: spectrum analyzer; PC: computer.
    Comparison between pump and SHG spatial profile, respectively.
    Autocorrelation measurement of the pulse at 1030, 1054, 1000 and 980 nm for top left, top right, bottom left and bottom right, respectively.
    Input (red) and depleted (orange) signal spectra for 1030, 1054, 1000 and 980 nm pulses.
    SHG power versus input power at different wavelengths.
    SHG efficiency versus input energy and average power for different wavelengths.
    Comparison (measured and simulated data) of the SHG efficiency as a function of the input intensity for different wavelengths.
    Experimental and simulated second harmonic generation spectrum of 1030 nm pumping beam.
    SHG efficiency versus focal spot diameter at two different energies: 3.7 and 3.8 nJ for the same crystal length.
    Second harmonic generation simulation determining the temporal length of the SHG pulse.
    • Table 1. Autocorrelation and spectral experimental data. $\unicode[STIX]{x1D70F}_{\text{AC}}$ – FWHM of the autocorrelation trace, $\unicode[STIX]{x1D70F}_{\text{pulse}}$ – retrieved Gaussian FWHM pulse length, $\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ – spectral FWHM bandwidth and $\unicode[STIX]{x1D70F}_{\text{pulse}}^{\text{TL}}$ – supported (transform-limited) pulse length.

      View table
      View in Article

      Table 1. Autocorrelation and spectral experimental data. $\unicode[STIX]{x1D70F}_{\text{AC}}$ – FWHM of the autocorrelation trace, $\unicode[STIX]{x1D70F}_{\text{pulse}}$ – retrieved Gaussian FWHM pulse length, $\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ – spectral FWHM bandwidth and $\unicode[STIX]{x1D70F}_{\text{pulse}}^{\text{TL}}$ – supported (transform-limited) pulse length.

      $\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x1D70F}_{\text{AC}}$ (fs)$\unicode[STIX]{x1D70F}_{\text{pulse}}$ (fs)$\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x1D70F}_{\text{pulse}}^{\text{TL}}$ (fs)
      103016411614.3109
      105417412316.1101
      100022515912.4118
      980263186 9.3152
    • Table 2. SHG spectral experimental data. $\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ represents the FWHM bandwidth of the SHG spectrum and $\unicode[STIX]{x1D70F}_{\text{SHG}}^{\text{TL}}$ the retrieved FWHM of the supported SHG pulse temporal length assuming Gaussian shape.

      View table
      View in Article

      Table 2. SHG spectral experimental data. $\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ represents the FWHM bandwidth of the SHG spectrum and $\unicode[STIX]{x1D70F}_{\text{SHG}}^{\text{TL}}$ the retrieved FWHM of the supported SHG pulse temporal length assuming Gaussian shape.

      $\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x1D70F}_{\text{SHG}}^{\text{TL}}$ (fs)
      5152.98130.6
      5273.89104.5
      5003.16118.2
      4901.89186.5
    Tools

    Get Citation

    Copy Citation Text

    Mario Galletti, Hugo Pires, Victor Hariton, Celso Paiva João, Swen Künzel, Marco Galimberti, Gonçalo Figueira. High efficiency second harmonic generation of nanojoule-level femtosecond pulses in the visible based on BiBO[J]. High Power Laser Science and Engineering, 2019, 7(1): 01000e11

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 21, 2018

    Accepted: Dec. 17, 2018

    Published Online: Feb. 25, 2019

    The Author Email:

    DOI:10.1017/hpl.2018.72

    Topics