Matter and Radiation at Extremes, Volume. 6, Issue 6, 064401(2021)

Commissioning experiment of the high-contrast SILEX-Ⅱ multi-petawatt laser facility

Wei Hong1、a), Shukai He1, Jian Teng1, Zhigang Deng1, Zhimeng Zhang1, Feng Lu1, Bo Zhang1, Bin Zhu1, Zenghai Dai1, Bo Cui1, Yuchi Wu1, Dongxiao Liu1, Wei Qi1, Jinlong Jiao1, Faqiang Zhang1, Zuhua Yang1, Feng Zhang1, Bi Bi1, Xiaoming Zeng1, Kainan Zhou1, Yanlei Zuo1, Xiaojun Huang1, Na Xie1, Yi Guo1, Jingqin Su1, Dan Han1, Ying Mao1, Leifeng Cao1, Weimin Zhou1, Yuqiu Gu1, Feng Jing1, Baohan Zhang1, Hongbo Cai2, Minqing He2, Wudi Zheng2, Shaoping Zhu2, Wenjun Ma3, Dahui Wang3, Yinren Shou3, Xueqing Yan3, Bin Qiao4, Yi Zhang4, Congling Zhong4, Xiaohui Yuan5, and Wenqing Wei5
Author Affiliations
  • 1Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, CAEP, Mianyang, Sichuan Province 621900, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100871, China
  • 3Institute of Heavy Ion Physics, Peking University, Beijing 100871, China
  • 4School of Physics, Peking University, Beijing 100871, China
  • 5School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(41)

    [1] D.Strickland, G.Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219-221(1985).

    [2] C.Danson, N.Hopps, D.Hillier et al. Petawatt class lasers worldwide. High Power Laser Sci. Eng., 3, E3(2015).

    [3] C.Haefner, J.Bromage, C. N.Danson et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng., 7, E54(2019).

    [4] H.Kiriyama, A. S.Pirozhkov, M.Nishiuchi et al. High-contrast high-intensity repetitive petawatt laser. Opt. Lett., 43, 2595(2018).

    [5] Y.Fukuda, A. S.Pirozhkov, M.Nishiuchi et al. Approaching the diffraction-limited, bandwidth-limited Petawatt. Opt. Express, 25, 20486(2017).

    [6] Z.Gan, L.Yu, W.Li et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett., 43, 5681-5684(2018).

    [7] K. N.Hatsagortsyan, A. D.Piazza, K. N.Muller. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177(2012).

    [8] H. S.Peng, X. M.Zhang, W. Y.Zhang et al. Progress in ICF programs at CAEP. Laser Part. Beams, 23, 205-209(2005).

    [9] Z.Kainan, Z.Qihua, S.Jingqin et al. The Xingguang-III laser facility: Precise synchronization with femtosecond, picosecond and nanosecond beams. Laser Phys. Lett., 15, 015301(2018).

    [10] K.Zhou, Y.Zuo, X.Zeng et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt. Lett., 42, 2014-2017(2017).

    [11] X.Zeng, K.Zhou, X.Huang et al. Improvement of focusing performance for a multi-petawatt OPCPA laser facility. Laser Phys., 28, 125301(2018).

    [12] S.Feldman, J.Kern, I.Kim et al. Simultaneous imaging of K-α radiation and coherent transition radiation from relativistic-intensity laser-irradiated solid target plasmas. High Energy Density Phys., 8, 60-65(2012).

    [13] J.Zheng, T.Sato, K. A.Tanaka et al. Study of hot electrons by measurement of optical emission from the rear surface of a metallic foil irradiated with ultraintense laser pulse. Phys. Rev. Lett., 92, 165001(2004).

    [14] Y.-H.Zhang, Y.-T.Li, G.-Q.Liao et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Phys. Rev. Lett., 116, 205003(2016).

    [15] J.Faure, A.Norlin, Y.Glinec et al. Observation of fine structures in laser-driven electron beams using coherent transition radiation. Phys. Rev. Lett., 98, 194801(2007).

    [16] T.Feurer, W.Theobald, L.Veisz et al. Three-halves harmonic emission from femtosecond laser produced plasmas with steep density gradients. Phys. Plasmas, 11, 3311(2004).

    [17] J.Hua, W.Hong, Y.He et al. Measuring fluence distribution of intense short laser based on the radiochromic effect. Opt. Lett., 46, 2795-2798(2021).

    [18] S. C.Wilks, W. L.Kruer, M.Tabak et al. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69, 1383(1992).

    [19] A. E.Dangor, F. N.Beg, A. R.Bell et al. A study of picosecond laser-solid interactions up to 1019 W cm−2. Phys. Plasmas, 4, 447-457(1997).

    [20] P. K.Patel, D. S.Hey, C. D.Chen et al. Bremsstrahlung and Kα fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons. Phys. Plasmas, 16, 082705(2009).

    [21] S. C.Wilks, H.Chen, W. L.Kruer et al. Hot electron energy distributions from ultraintense laser solid interactions. Phys. Plasmas, 16, 020705(2009).

    [22] M. S.Wei, F. N.Beg, M. G.Haines et al. Hot-electron temperature and laser-light absorption in fast ignition. Phys. Rev. Lett., 102, 045008(2009).

    [23] T.Kluge, A.Debus, T.Cowan et al. Electron temperature scaling in laser interaction with solids. Phys. Rev. Lett., 107, 205003(2011).

    [24] M.Sherlock. Universal scaling of the electron distribution function in one-dimensional simulations of relativistic laser-plasma interactions. Phys. Plasmas, 16, 103101(2009).

    [25] M.Tabak, Y.Sentoku, A. J.Kemp. Hot-electron energy coupling in ultraintense laser-matter interaction. Phys. Rev. E, 79, 066406(2009).

    [26] A. S.Pirozhkov, M.Nishiuchi, H.Daido. Review of laser-driven ion sources and their applications. Rep. Prog. Phys., 75, 056401(2012).

    [27] A.Macchi, M.Passoni, M.Borghesi. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751-793(2013).

    [28] T. E.Cowan, S. C.Wilks, A. B.Langdon et al. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas, 8, 542(2001).

    [29] M. H.Key, R. A.Snavely, S. P.Hatchett et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945-2948(2000).

    [30] P.Mora. Thin-foil expansion into a vacuum. Phys. Rev. E, 72, 056401(2005).

    [31] S.Kar, A. P. L.Robinson, M.Zepf et al. Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys., 10, 013021(2008).

    [32] S. V.Bulanov, M.Borghesi, T.Esirkepov et al. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett., 92, 175003(2004).

    [33] R. J.Gray, M.King, A.Higginson et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun., 9, 724(2018).

    [34] L.Obst, P. L.Poole, G. E.Cochran et al. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime. New J. Phys., 20, 013019(2018).

    [35] R.Prasad, D.Doria, A. A.Andreev et al. Fast ion acceleration from thin foils irradiated by ultra-high intensity, ultra-high contrast laser pulses. Appl. Phys. Lett., 99, 121504(2011).

    [36] D.Doria, R.Prasad, S.Ter-Avetisyan et al. Proton acceleration using 50 fs, high intensity ASTRA-Gemini laser pulses. Nucl. Instrum. Methods Phys. Res., Sect. A, 653, 113-115(2011).

    [37] J.Fuchs, S.Gaillard, N.Renard-Le Galloudec et al. Study of saturation of CR39 nuclear track detectors at high ion fluence and of associated artifact patterns. Rev. Sci. Instrum., 78, 013304(2007).

    [38] S.Tietze, G. A.Becker, S.Keppler et al. Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime. Plasma Phys. Controlled Fusion, 60, 055010(2018).

    [39] Y.Sentoku, P. K.Patel, A. J.Mackinnon et al. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett., 88, 215006(2002).

    [40] S.Singh, D.Kumar, M.Smid et al. Alignment of solid targets under extreme tight focus conditions generated by an ellipsoidal plasma mirror. Matter Radiat. Extremes, 4, 024402(2019).

    [41] S.Buffechoux, A.Kon, M.Nakatsutsumi et al. Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity. Opt. Lett., 35, 2314-2316(2010).

    Tools

    Get Citation

    Copy Citation Text

    Wei Hong, Shukai He, Jian Teng, Zhigang Deng, Zhimeng Zhang, Feng Lu, Bo Zhang, Bin Zhu, Zenghai Dai, Bo Cui, Yuchi Wu, Dongxiao Liu, Wei Qi, Jinlong Jiao, Faqiang Zhang, Zuhua Yang, Feng Zhang, Bi Bi, Xiaoming Zeng, Kainan Zhou, Yanlei Zuo, Xiaojun Huang, Na Xie, Yi Guo, Jingqin Su, Dan Han, Ying Mao, Leifeng Cao, Weimin Zhou, Yuqiu Gu, Feng Jing, Baohan Zhang, Hongbo Cai, Minqing He, Wudi Zheng, Shaoping Zhu, Wenjun Ma, Dahui Wang, Yinren Shou, Xueqing Yan, Bin Qiao, Yi Zhang, Congling Zhong, Xiaohui Yuan, Wenqing Wei. Commissioning experiment of the high-contrast SILEX-Ⅱ multi-petawatt laser facility[J]. Matter and Radiation at Extremes, 2021, 6(6): 064401

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fundamental Physics At Extreme Light

    Received: May. 31, 2020

    Accepted: Sep. 15, 2021

    Published Online: Dec. 7, 2021

    The Author Email: Hong Wei (jminhong@126.com)

    DOI:10.1063/5.0016019

    Topics