Acta Photonica Sinica, Volume. 53, Issue 5, 0553107(2024)

Research Progress on Chaotic Microcavity Lasers(Invited)

Jiancheng LI1,2, Binjuan LEI1,2, Jinlong XIAO1,2, Yuede YANG1,2, and Yongzhen HUANG1,2、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Materials and Devices,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • 2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    References(60)

    [1] SCIAMANNA M, SHORE K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 9, 151-162(2015).

    [2] UCHIDA A, AMANO K, INOUE M et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2, 728-732(2008).

    [3] REIDLER I, AVIAD Y, ROSENBLUH M et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Physical Review Letters, 103, 024102(2009).

    [4] GAO Hua, WANG Anbang, WANG Longsheng et al. 0.75 gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of fabry-perot lasers[J]. Light-Science & Applications, 10, 172(2021).

    [5] SHAO Weidong, FU Yudi, CHENG Mengfan et al. Chaos synchronization based on hybrid entropy sources and applications to secure communication[J]. IEEE Photonics Technology Letters, 33, 1038-1041(2021).

    [6] LIN F Y, LIU J M. Chaotic radar using nonlinear laser dynamics[J]. IEEE Journal of Quantum Electronics, 40, 815-820(2004).

    [7] TSENG C H, HWANG S K. Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications[J]. Optics Letters, 45, 3777-3780(2020).

    [8] ZHANG Limeng, PAN Biwei, CHEN Guangchan et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser[J]. Applied Optics, 56, 1253-1256(2017).

    [9] LI Mengwen, ZHANG Xiaocheng, ZHANG Jianzhong et al. Long-range and high-precision fault measurement based on hybrid integrated chaotic laser[J]. IEEE Photonics Technology Letters, 31, 1389-1392(2019).

    [10] OHTSUBO Junji[M]. Semiconductor lasers stability, instability and chaos (4th ed)(2017).

    [11] JIANG Z F, WU Z M, JAYAPRASATH E et al. Nonlinear dynamics of exclusive excited-state emission quantum dot lasers under optical injection[J]. Photonics, 6, 6020058(2019).

    [12] SIMPSON T B. Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection[J]. Optics Communications, 215, 135-151(2003).

    [13] LIN F Y, TU S Y, HUANG C C et al. Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 604-611(2009).

    [14] QIAO Lijun, LV Tianshuang, XU Yong et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers[J]. Optics Letters, 44, 5394-5397(2019).

    [15] LENSTRA D, VERBEEK B H, DENBOEF A J. Coherence collapse in single-mode semiconductor lasers due to optical feedback[J]. IEEE Journal of Quantum Electronics, 21, 674-679(1985).

    [16] MORK J, MARK J, TROMBORG B. Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback[J]. Physical Review Letters, 65, 1999-2002(1990).

    [17] TANG S, LIU J M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback[J]. IEEE Journal of Quantum Electronics, 37, 329-336(2001).

    [18] ARGYRIS A, HAMACHER M, CHLOUVERAKIS K E et al. Photonic integrated device for chaos applications in communications[J]. Physical Review Letters, 100, 194101(2008).

    [19] SUNADA S, HARAYAMA T, ARAI K et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide[J]. Optics Express, 19, 5713-5724(2011).

    [20] WU J G, ZHAO L J, WU Z M et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip[J]. Optics Express, 21, 23358-23364(2013).

    [21] TRONCIU V Z, MIRASSO C, COLET P et al. Chaos generation and synchronization using an integrated source with an air gap[J]. IEEE Journal of Quantum Electronics, 46, 1840-1846(2010).

    [22] CHAI Mengmeng, QIAO Lijun, LI Shuhui et al. Wavelength-tunable monolithically integrated chaotic semiconductor laser[J]. Journal of Lightwave Technology, 40, 5952-5957(2022).

    [23] ZHANG Mingjiang, XU Yuhang, ZHAO Tong et al. A hybrid integrated short-external-cavity chaotic semiconductor laser[J]. IEEE Photonics Technology Letters, 29, 1911-1914(2017).

    [24] VIRTE M, PANAJOTOV K, THIENPONT H et al. Deterministic polarization chaos from a laser diode[J]. Nature Photonics, 7, 60-65(2013).

    [25] VAHALA K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [26] HE Lina, OZDEMIR S K, YANG Lan. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 7, 60-82(2013).

    [27] XIAO Zhixiong, HUANG Yongzhen, YANG Yuede et al. Single-mode unidirectional-emission circular-side hexagonal resonator microlasers[J]. Optics Letters, 42, 1309-1312(2017).

    [28] LONG Heng, HUANG Yongzhen, YANG Yuede et al. High-speed direct-modulated unidirectional emission square microlasers[J]. Journal of Lightwave Technology, 33, 787-794(2015).

    [29] LONG Heng, HUANG Yongzhen, MA Xiuwen et al. Dual-transverse-mode microsquare lasers with tunable wavelength interval[J]. Optics Letters, 40, 3548-3551(2015).

    [30] WENG Haizhong, WADA Osamu, HAN Junyuan et al. Sub-THz wave generation based on a dual wavelength microsquare laser[J]. Electronics Letters, 53, 939-941(2017).

    [31] WU Jiliang, GUO Xiaohui, JIAO Yadong et al. Octave-spanning optical frequency comb generation using a directly-modulated microlaser source[J]. Journal of Lightwave Technology, 40, 5575-5582(2022).

    [32] WANG Ting, WU Jiliang, ZHANG Xucheng et al. Octave-spanning frequency comb generation based on a dual-mode microcavity laser[J]. Photonics Research, 10, 2107-2114(2022).

    [33] HUANG Yongzhen, WANG Shijiang, YANG Yuede et al. Optical bistability in inp/gainasp equilateral-triangle-resonator microlasers[J]. Optics Letters, 34, 1852-1854(2009).

    [34] LIN Jiandong, HUANG Yongzhen, YANG Yuede et al. Optical bistability in gainasp/inp coupled-circular resonator microlasers[J]. Optics Letters, 36, 3515-3517(2011).

    [35] LI Jiancheng, HUANG Yongtao, MA Chunguang et al. Self-pulsing and dual-mode lasing in a square microcavity semiconductor laser[J]. Optics Letters, 48, 4953-4956(2023).

    [36] XIAO Jinlong, MA Chunguang, XIAO Zhixiong et al. Random bit generation in dual transverse mode microlaser without optical injection or feedback[C], 171-172(2018).

    [37] MA Chunguang, XIAO Jinlong, XIAO Zhixiong et al. Chaotic microlasers caused by internal mode interaction for random number generation[J]. Light-Science & Applications, 11, 187(2022).

    [38] LI Jiancheng, XIAO Jinlong, YANG Yuede et al. Nonlinear dynamics in a circular-sided square microcavity laser[J]. Photonics Research, 11, A97-A106(2023).

    [39] LI Jiancheng, XIAO Jinlong, YANG Yuede et al. Random bit generation based on a self-chaotic microlaser with enhanced chaotic bandwidth[J]. Nanophotonics, 12, 4109-4116(2023).

    [40] DONG Yunxiao, LI Jiancheng, LI Yali et al. Feedback insensitivity in a self-chaotic microcavity laser[J]. Optics Letters, 49, 69-72(2024).

    [41] CHAI Mengmeng, QIAO Lijun, ZHANG Mingjiang et al. Progress in photonic integrated chaotic semiconductor laser[J]. Infrared and Laser Engineering, 49, 20201066(2020).

    [42] KUANG Shangqi, GUO Xiangshuai, FENG Yuling et al. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 14, 1133-1145(2021).

    [43] ZHANG Mingjiang, WANG Yuncai. Review on chaotic lasers and measurement applications[J]. Journal of Lightwave Technology, 39, 3711-3723(2021).

    [44] FENG Wei, MAO Yu, MENG Yue et al. Progress in the study of nonlinear dynamic characteristics based on quantum cascade lasers[J]. Journal of Infrared and Millimeter Waves, 42, 763-771(2023).

    [45] LIU Jiachen, HUANG Yongzhen, HAO Youzeng et al. Numerical simulation of noise characteristics for WGM microcavity lasers (invited)[J]. Acta Photonica Sinica, 51, 0251205(2022).

    [46] HAO Youzeng, MA Chunguang, SHEN Zhengzheng et al. Comparison of single- and dual-mode lasing states of a hybrid-cavity laser under optical feedback[J]. Optics Letters, 46, 2115-2118(2021).

    [47] MA Chunguang, WU Jiliang, XIAO Jinlong et al. Wideband chaos generation based on a dual-mode microsquare laser with optical feedback[J]. Chinese Optics Letters, 19, 111401(2021).

    [48] LI Yali, MA Chunguang, XIAO Jinlong et al. Wideband chaotic tri-mode microlasers with optical feedback[J]. Optics Express, 30, 2122-2130(2022).

    [49] WANG Ting, WU Jiliang, MA Chunguang et al. Dual-mode square microcavity lasers with a tunable wavelength interval (invited)[J]. Acta Photonica Sinica, 51, 0251202(2022).

    [50] WANG Yixuan, JIA Zhiwei, GAO Zhensen et al. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback[J]. Optics Express, 28, 18507-18515(2020).

    [51] WANG Yixuan, WANG Daming, JIA Zhiwei et al. Generation of wideband chaos without time delay signature using the microlaser with dispersive optical feedback[J]. Jouranl of Shenzhen University (Science and Engineering), 38, 252-257(2021).

    [52] TERRIEN S, KRAUSKOPF B, BRODERICK N G R et al. Merging and disconnecting resonance tongues in a pulsing excitable microlaser with delayed optical feedback[J]. Chaos, 33, 023142(2023).

    [53] ALBERT F, HOPFMANN C, REITZENSTEIN S et al. Observing chaos for quantum-dot microlasers with external feedback[J]. Nature Communications, 2, 366(2011).

    [54] HOLZINGER S, REDLICH C, LINGNAU B et al. Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback[J]. Optics Express, 26, 22457-22470(2018).

    [55] ZOU Lingxiu, LIU Bowen, LV Xiaomeng et al. Integrated semiconductor twin-microdisk laser under mutually optical injection[J]. Applied Physics Letters, 106, 191107(2015).

    [56] TANG Min, YANG Yuede, WU Jiliang et al. Dynamical characteristics of twin-microring lasers with mutual optical injection[J]. Journal of Lightwave Technology, 39, 1444-1450(2021).

    [57] LI Jiancheng, LI Yali, DONG Yunxiao et al. 400 Gb/s physical random number generation based on deformed square self-chaotic lasers[J]. Chinese Optics Letters, 21, 061901(2023).

    [58] ANDREW R, JUAN S, JAMES N et al[S](2010).

    [59] LI Jiancheng, DONG Yunxiao, LEI Binjuan et al. Optical time domain reflectometry based on a self-chaotic circular-sided microcavity laser[J]. Applied Optics, 63, 154-158(2024).

    [60] HU Zhihong, ZHU Jingguo, JIANG Chenghao et al. Improving the ranging performance of chaos lidar[J]. Applied Optics, 62, 3598-3605(2023).

    Tools

    Get Citation

    Copy Citation Text

    Jiancheng LI, Binjuan LEI, Jinlong XIAO, Yuede YANG, Yongzhen HUANG. Research Progress on Chaotic Microcavity Lasers(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553107

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Microcavity Photonics

    Received: Feb. 28, 2024

    Accepted: Apr. 3, 2024

    Published Online: Jun. 20, 2024

    The Author Email: Yongzhen HUANG (yzhuang@semi.ac.cn)

    DOI:10.3788/gzxb20245305.0553107

    Topics