Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1085(2022)
Mid-Infrared Fluoride Glass Fibers - A Short Review
[1] [1] STUART A D. Some applications of infrared optical sensing[J].Sensors Actuators B Chem, 1993, 11(1-3): 185-193.
[2] [2] GOYA K, MORI A, TOKITA S, et al. Broadband mid-infrared amplified spontaneous emission from Er/Dy co-doped fluoride fiber with a simple diode-pumped configuration[J]. Sci Rep, 2021, 11(1): 5432.
[4] [4] POLLNAN M. The route toward a diode-pumped 1-W erbium 3-μm fiber laser[J]. IEEE J Quantum Electron, 1997, 33(11): 1982-1990.
[5] [5] RICHARDS, BILLY D, JHA A. Oxide glasses for mid-infrared lasers[J]. Laser Techno Defense Security VII, 2011, 8039: 1372-1381.
[6] [6] TIAN Ying, WEI Tao, JING Xufeng, et al. Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions[J]. Mater Res Bull, 2016, 76: 67-71.
[7] [7] ZHOU Lingfeng, YE Renguang, HUANG Feifei, et al. Long lifetime of dual rare earth active centers in novel multi-component fluoride glasses for mid-infrared laser applications[J]. Infr Phys Technol, 2020,105: 103189.
[8] [8] POULAIN M. Advanced glasses[J]. Annales Chim Sci Matér, 2003,28(2): 87-94.
[9] [9] TRAN D, SIGEL G, BENDOW B. Heavy metal fluoride glasses and fibers: A review[J]. J Lightwave Technol, 1984, 2(5): 566-586.
[10] [10] SEN R, CASPARY R, KOWALSKY W. Optimisation of melting and casting conditions for Zr-fluoride based glasses[J]. Opt Mater, 2007,29(8): 1035-1040.
[11] [11] SAAD M, POULAIN M. Fluoride glass synthesis by sol-gel process[J]. J Non-Cryst Solids, 1995, 184: 352-355.
[12] [12] BABITSYNA A A, EMEL’YANOVA T A, FEDOROV V A. Glass formation in the ZrF4-MF2-LaF3-NaF (M - Ba, Pb) systems[J]. J Inorg Mater, 2009, 45: 308.
[13] [13] MERKULOV E B, GONCHARUK V K, YAROSHENKO R M. Glass formation in the fluoride system ZrF4-BiF3-BaF2[J]. Glass Phys Chem, 2019, 39: 240-243.
[17] [17] FEDOROV V D, SAKHAROV V V, BOUTARFAIA A, et al. Kinetics of isothermal crystallization of fluoride glasses[J]. Non-cryst Solids, 2001, 284(1-3): 79-84.
[18] [18] PISARSKI W A. Spectroscopic study of Eu3+ ions in heavy metal fluoride and oxide glasses[J]. Phys Status Solidi (b), 2005, 242(14):2910-2918.
[19] [19] HAMMER P, RIZZATO A P, SANTILLI C V, et al. Improvement of the chemical resistance of zirconium fluoride glasses coated with a Tiron modified tin oxide layer prepared by the sol-gel process[J]. J Non-Cryst Solids, 2006, 352(32-35): 3653-3658.
[20] [20] TIAN Ying, XU Rongrong, HU Lili, et al. 2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation[J]. Quant Spectr Radiati Transfer, 2012, 113(1): 87-95.
[21] [21] KOZAK M M, GOEBEL D, CASPARY R, et al. Spectroscopic properties of thulium-doped zirconium fluoride and indium fluoride glasses[J]. J Non-Cryst Solids, 2005, 351(24-26): 2009-2021.
[22] [22] WOJCIECH A. PISARSKI. Spectroscopic analysis of praseodymium and erbium ions in heavy metal fluoride and oxide glasses[J].Molecular Structure, 744-747: 473-479.
[23] [23] WANG Jie, GAN Fuxi, QI Changhong. The emission characteristics of Nd3+-doped fluoride glass fiber[J]. J Non-Cryst Solids, 1995, 184:234-239.
[24] [24] MOHAMMED SAAD. Heavy metal fluoride glass fibers and their applications[C]//Proc. SPIE 8307, Passive Components and Fiber-Based Devices VIII, 2011.
[25] [25] KAVUN V Y, VOIT E I, YAROSHENKO M, et al. Structure and ion mobility in glasses in the BiF3-PbF2-ZrF4 systems studied by Raman and NMR spectroscopy[J]. J Non-Cryst Solids, 2014, 401: 224-231.
[26] [26] SANTOS F A, DELBEN J R J, DELBEN A A S T, et al. Thermal stability and crystallization behavior of TiO2 doped ZBLAN glasses[J]. J Non-Cryst Solids, 2011, 357(15): 2907-2910.
[27] [27] OHSAWA K, SHIBATA T, NAKAMURA K, et al. Fluorozirconate glasses for infrared transmitting optical fibers[C]//Proceedings of the 7th European Conference on Optical Communication (ECOC).1.1-1-1.1-4, 1981.
[28] [28] BABITSYNA A A, EMEL’YANOV T A, ZHUKOV E G. et al.Glass formation in the fluorozirconate systems containing lead fluoride[J]. Glass Phys Chem, 33, 2007, 545-549.
[29] [29] XUE Tianfeng, HUANG Chunlei, WANG Longfei, et al. Er3+-doped fluorozirconate glass modified by PbF2 with high stimulated emission cross-section[J]. Opt Mater, 2018, 77: 117-121.
[30] [30] SAKAGUCHI S , TAKAHASHI S. Low-loss fluoride optical fibers for midinfrared optical communication[J]. Lightwave Technol, 1987,5(9): 1219-1228.
[31] [31] MARKUS P H, RICHARD I E, WENDY M. PATTERSON.Synthesis of ultrapure ZBLAN glass for laser refrigeration[C]//Proc.SPIE 6907, Laser Refrigeration of Solids, 69070A, 2008.
[32] [32] GORNI G, JOSE J V, JADRA M, et al. Transparent glass-ceramics produced by sol-gel: A suitable alternative for photonic materials[J].Materials, 2018, 11(2): 212.
[33] [33] SAAD M. High purity fluoride glass synthesis: A review[C]//Proc.SPIE 7228, Laser Refrigeration of Solids II, 72280G, 2009.
[34] [34] TIKHOMIROV V K, FURNISS D, SEDDON A B. Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics[J]. Appl Phys Lett, 2002, 81: 1937.
[35] [35] LOUSTEAU J, FURNISS D, ARRAND H F, et al. Fabrication of heavy metal fluoride glass, optical planar waveguides by hot-spin casting[J]. J Non-Cryst Solids, 2008, 354(32): 3877-3886.
[36] [36] PHEBUS B, GETMAN B, KILEY S, et al. Preparation and analysis of Eu3+- and Eu2+-doped ZBLAN and ZBLALi fluorozirconate glasses[J]. Solid State Ionics, 2005, 176(35/36): 2631-2638.
[37] [37] CHEN W, DUNN B, SHLICHTA P, et al. Fluoride glass starting materials: Characterization and effects of thermal treatment[J]. Mater Sci Lett, 1987, 6: 1164-1166.
[38] [38] SAAD M. Fluoride glass fiber: State of the art[C]//Proc. SPIE 7316,Fiber Optic Sensors and Applications VI, 73160N, 2009.
[41] [41] ZHANG Yaping, SONG Peng, XIA Wei , et al. A low-loss and high birefringence fluoride photonic crystal fiber in near infrared band[J].Optik, 2019, 185: 772-776.
[42] [42] PA?LICK C, JOHNSON J A, SCHWEIZER S. Crystallization studies on rare-earth co-doped fluorozirconate-based glasses[J]. J Non-Cryst Solids, 2013, 371/372: 33-36.
[43] [43] SHINN M D, SIBLEY W A, DREXHAGE M G, et al. Optical transitions of Er3+ ions in fluorozirconate glass[J]. Phys Rev B, 1983,27(11): 6635-6648.
[45] [45] HUANG Feifei, GUO Yanyan, MA Yaoyao, et al. Highly Er3+-doped ZrF4-based fluoride glasses for 2.7 μm laser materials[J].Appl Opt,2013, 52: 1399-1403.
[46] [46] KWA?N M, MIERCZYK Y Z, ST?PIE? R, et al. Nd3+-, Er3+- and Pr3+-doped fluoride glasses for laser applications[J]. J Alloys Compd,2000, 300-301: 341-347.
[47] [47] PéRON O, DUVERGER-ARFUSO C, JESTIN Y, et al. Enhanced spectroscopic properties in Er3+/Yb3+-activated fluoride glass-ceramics planar waveguides[J]. Opt Mater, 2009, 31(9): 1288-1291.
[48] [48] TIAN Ying, ZHANG Junjie, JING Xufeng, et al. Intense mid-infrared emissions and energy transfer dynamics in Ho3+/Er3+ codoped fluoride glass[J] J Lumin, 2013, 138: 94-97.
[49] [49] HUANG Feifei, WANG Tao, GUO Yanyan, et al. Positive influence of Tm3+ on effective Er3+: 3μm emission in fluoride glass under 980nm excitation[J]. Infr Phys Technol, 2017, 82: 120-125.
[50] [50] BOGDANOV V K, BOOTH D J, GIBBS W E K. Population dynamics in Er3+-doped fluoride glasses[J]. Phys Rev B, 2001, 63(20):5107.
[51] [51] KAM C H, BUDDHUDU S. Red to blue upconversion luminescence in Tm3+ doped ZrF4-ZnF2-AlF3-BaF2-YF3 optical glass[J]. Microelectron J, 2003, 34(9): 849-854.
[52] [52] LIAO X, JIANG X, YANG Q, et al. Spectral properties of Er3+/Tm3+ Co-doped ZBLAN glasses and fibers[J]. Materials, 2017, 10(5): 486.
[53] [53] SANDERS S, WAARTS R G, MEHUYS D G, et al. Laser diode pumped 106 mW blue upconversion fiber laser[J]. Appl Phys Lett,1995, 67, 1815.
[54] [54] QIN G, HUANG S, FENG Y, et al. Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers: modeling and experiments[J].Appl Phys B, 2006, 82: 65-70.
[55] [55] BANEY D M, RANKIN G, CHANG K W. Simultaneous blue and green upconversion lasing in a laser-diode-pumped Pr3+/Yb3+ doped fluoride fiber laser[J]. Appl Phys Lett, 1996, 69: 1662.
[56] [56] AMIN M Z, MAJEWSKI M R, JACKSON S D. GaN laser diode pumped dysprosium doped ZBLAN fibre laser for yellow emission[C]//Proc. SPIE 11200, AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) , 2019.
[57] [57] AMIN M Z, MAJEWSKI M R, JACKSON S D. Yellow emission from dysprosium-doped ZBLAN fiber laser[C]//Proc. SPIE 11260,Fiber Lasers XVII: Technology and Systems, 112601K, 2020.
[58] [58] ZHU Xiushan, ZONG Jie, KORT WIERSMA, et al. Watt-level short-length holmium-doped ZBLAN fiber lasers at 12 μm[J]. Opt Lett, 2014, 39(6): 1533.
[59] [59] ZHU Xiushan, ZONG Jie, ANDY MILLER, et al. Single-frequency Ho3+-doped ZBLAN fiber laser at 1200 nm[J]. Opt Lett, 2012, 37:4185-4187.
[60] [60] JACKSON S D.Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Opt Lett, 2004, 29,334-336.
[61] [61] YUEN H TSANG, ATALLA E.EL-TAHER, TERENCE A KING, et al.Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd: YAG laser operating at 1.3 μm[J]. Opt Express, 2006, 14:678-685.
[62] [62] GORJAN M, ROK PETKOV?EK, MARKO MARIN?EK, et al.High-power pulsed diode-pumped Er: ZBLAN fiber laser[J]. Opt Lett,2011, 36: 1923-1925.
[63] [63] HUDSON D D, WILLIAMS R J, WITHFORD M J, et al.Single-frequency fiber laser operating at 2.9 μm[J]. Opt Lett, 2013,38: 2388-2390.
[64] [64] JACKSON S D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser[J]. Appl Phys Lett, 2013, 83: 1316.
[65] [65] WEI Chen, LYU Yanjia, LI Qingru, et al. Wideband tunable, carbon nanotube mode-locked fiber laser emitting at wavelengths around 3 μm[J]. IEEE Photon Technol Lett, 2019, 31(11): 869-872.
[66] [66] TSANG Y H, EL-TAHER A E. Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~ 1.1 μm by an Yb fiber laser[J]. Laser Phys Lett, 2011(8): 818.
[67] [67] LUO Hongyu, XU Yao, LI Jianfeng , et al. Gain-switched dysprosium fiber laser tunable from 2.8 to 3.1 μm[J]. Opt Express,2019, 27: 27151-27158.
[68] [68] ZHU G, ZHU X, NORWOO R A, et al. Experimental and Numerical Investigations on Q-Switched Laser-Seeded Fiber MOPA at 2.8μm[J]. J Lightwave Technol, 2014, 32(23): 4553-4557.
[69] [69] WAN Peng, YANG Lihmei, BAI Shuang, et al. High energy 3 μm ultrafast pulsed fiber laser[J]. Opt Express, 2015, 23: 9527-9532.
[71] [71] SOJKA L, PAJEWSKI L, LAMRINI S, et al. Experimental investigation of actively Q-Switched Er3+: ZBLAN fiber laser operating at around 2.8 μm[J]. Sensors, 2020, 20(16): 4642.
[72] [72] ZHANG X, LI W, LI J, et al. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm[J]. Opto-Electron Adv, 2020, 3(5): 10.
[73] [73] DU Weizhi, XIAO Xuan, CUI Yifan, et al. Demonstration of 0.67-mJ and 10-ns high-energy pulses at 2.72 μm from large core Er: ZBLAN fiber amplifiers[J]. Opt Lett, 2020, 45: 5538-5541.
[74] [74] AYDIN Y O, FORTIN V, VALLéE R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Opt Lett, 2018, 43: 4542-4545.
[75] [75] SHEN Y, WANG Y, LUAN K. et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Sci Rep, 2016, 6(1).
[76] [76] SHEN Y, WANG Y, LUAN K. et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Appl Phys B, 2017,123: 105.
[78] [78] TOKITA S, HIROKANE M, MURAKAMI M, et al. Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88μm[J]. Opt Lett, 2010, 35:3943-3945.
[79] [79] TOKITA S, MURAKAMI M, SHIMIZU S, et al. 12 WQ-switched Er:ZBLAN fiber laser at 2.8 μm[J]. Opt Lett, 2011, 36: 2812-2814.
[80] [80] REZVANI S A, OGAWA K, FUJI T. Highly coherent multi-octave polarization-maintained supercontinuum generation solely based on ZBLAN fibers[J]. Opt Express, 2020, 28: 29918-29926.
[81] [81] MOSELUND P M, PETERSEN C, DUPONT S, et al.Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared[C]//Proc. SPIE 8381, Laser Technology for Defense and Security VIII, 83811A, 2012.
[82] [82] AGGER C, PETERSEN C, DUPONT S, et al. Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation[J]. Opt Soc Am B, 2012, 29: 635-645.
[83] [83] XIA C, KUMAR M, KULKARNI O P, et al. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping[J]. Opt Lett, 2006, 31: 2553-2555.
[84] [84] XIA C, XU Z, ISLAM M N, et al. 10.5 W Time-averaged power Mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation[J]. IEEE J Selected Topics Quantum Electron, 2009, 15(2): 422-434.
[85] [85] LIU Kun, LIU Jiang, SHI Hongxing, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to21.8 W average output power[J]. Opt Express, 2014, 22: 24384-24391.
[86] [86] ZHENG Zhijian, OUYANG Deqin, ZHAO Junqing, et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photon Res, 2016, 4:135-139.
[87] [87] YANG L, WU T, ZHANG B, et al. 30-W Supercontinuum Genaration in ZBLAN Fiber[C]//18th International Conference on Optical Communications and Networks (ICOCN), 2019.
[88] [88] XIA Kai, YANG Lingling, YAN Bin, et al. Watt-level ultra-flattened mid-infrared supercontinuum with high power stability generation in an all-fiber structured Tm-doped fiber amplifier pumped ZBLAN single-mode fiber[J]. Opt Laser Technol, 2020, 127, 106204.
[89] [89] JIANG X, JOLY N Y, FINGERM A A, et al.[J]. Nat Photon, 2015,9(2): 133-139.
[91] [91] IGNATIEVA L N, MERKULOV E B, STREMOUSOVA E A. et al.Effect of bismuth trifluoride on the characteristics of fluoroindate glasses: The InF3-BiF3-BaF2 system[J]. Russ J Inorg Chem, 2006, 51:1641-1645.
[92] [92] BOUTARFAIA A, POULAIN M. Composition adjustments in Fuoroindate glasses[J]. J Mater Chem, 2000, 10: 937-939.
[93] [93] JESTIN Y, LE SAUZE A, BOULARD B, et al. Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber[J]. J Non-Cryst Solids, 2003, 320(1-3): 231-237.
[94] [94] AKELLA A, DOWNING E A, LAMBERTUS HESSELINK. New fluoroindate glass compositions[J]. J Non-Cryst Solids, 1997,213-214: 1-5.
[95] [95] SOUFIANE A, MESSADDEQ Y, POULAIN M, et al. Stabilization of fluoroindate glasses by magnesium fluoride[J]. J Non-Cryst Solids,1997, 213-214: 85-89.
[96] [96] BOUTARFAIA A, POULAIN M. Fluoride glasses in the InF3-GaF3- YF3-PbF2-CaF2-ZnF2 system[J]. J Phys Chem Solids, 2002, 63(11):2129-2133.
[97] [97] IGNATIEVA L N, SUROVTSEV N V, MERKULOV E B, et al. InF3-based bismuth-containing glasses[J]. Russ J Inorg Chem, 2012,57: 139-145.
[98] [98] BEI J F, MONRO T M, HEMMING A, et al. Reduction of scattering loss in fluoroindate glass fibers[J]. Opt Mater Express, 2013, 3(9):1285-1301.
[99] [99] SAAD M. Indium fluoride glass fibers[C]//Proc. SPIE 8275, Laser Refrigeration of Solids V, 82750D, 2012.
[100] [100] PISARSKA J, SLCZOK M, ZELECHOWER M, et al. Some properties of InF3-based fluoride glasses doped with Tm3+ and Tm3+-Tb3+ ions[C]//Proc. SPIE 5028, Optical Fibers and Their Applications VIII, 2003.
[101] [101] PISARSKI W A, PISARSKA J, RYBA-ROMANOWSKI W. Judd-Ofelt analysis and emission properties of Eu3+ ions in fluorindate glasses[C]//Proc. SPIE 5028, Optical Fibers and Their Applications VIII, 2003.
[102] [102] PISARSKA J. IR transmission and emission spectra of erbium ions in fluoroindate glass[J]. J Non-Cryst Solids, 2004, 345-346: 382-385.
[103] [103] ZHANG Q Y, YANG G F, BUDDHUDU S, et al. UV-blue upconverted emission from Nd3+-doped InF3-based heavy-metal fluoride glasses for blue upconversion fibre laser[J]. Chin Phys Lett,2005, 22: 715.
[104] [104] FINLEY M F, MURTAGH M T, GEORGE H, et al. Development of Er3+-doped heavy-metal fluoride glasses for WDM broadband applications[C]//Proc. SPIE 3416, Infrared Glass Optical Fibers and Their Applications, 1998.
[106] [106] BERROU A, KIELECK C, EICHHORN M. Mid-infrared lasing from Ho3+ in bulk InF3 glass[J]. Opt Lett, 2015, 40: 1699-1701.
[107] [107] WANG Ruicong, ZHANG Jiquan, ZHA Haiyan, et al. 3.9 μm emission and energy transfer in ultra-low OH?, Ho3+ /Nd3+ co-doped fluoroindate glasses[J]. J Lumin, 2020, 225: 117363.
[108] [108] ZHOU F, LI J, LUO H, et al. Numerical analysis of 3.92 μm dual-wavelength pumped heavily-holmium-doped fluoroindate fiber lasers[J]. J Lightwave Technol, 2021, 39(2): 633-645.
[109] [109] WANG Pengfei, ZHANG Jie, ZHANG Jiquan, et al. 3.5 μm emission in Er3+ doped fluoroindate glasses under 635 nm laser excitation[J]. J Lumin, 2021, 237: 118200.
[110] [110] YEHOUESSI J P, SéBASTIEN V, CARREE J Y, et al. 3 W Mid-IR supercontinuum extended up to 4.6 μm based on an all-PM thulium doped fiber gain-switch laser seeding an InF3 fiber[C]//Proc.SPIE 10902, Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 2019.
[111] [111] JIA Shijie, JIA Zhixu, YAO Chuanfei, et al. 2875 nm lasing from Ho3+-doped fluoroindate glass fibers[J]. Photon Technol Lett, 2018,30(4): 323-326.
[112] [112] GOMES L, FORTIN V, BERNIER M, et al. The basic spectroscopic parameters of Ho3+-doped fluoroindate glass for emission at 3.9 μm[J]. Opt Mater, 2016, 60: 618-626.
[113] [113] GOMES L, FORTIN V, BERNIER M, et al. Excited state absorption and energy transfer in Ho3+-doped indium fluoride glass[J]. Opt Mater, 2017, 66: 519-526.
[114] [114] MAES F, FORTIN V, POULAIN S, et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 2018, 5: 761-764.
[115] [115] MAJEWSKI M R, WOODWARD R I, CARREé J Y, et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber[J]. Opt Lett, 2018, 43: 1926-1929.
[116] [116] MAJEWSKI M R, JACKSON S D. Numerical Design of 4 μm-class dysprosium fluoride fiber lasers[J]. J Lightwave Technol, 2021,39(15): 5103-5110.
[117] [117] ZHANG Zhi, WANG Ruicong, LIU Mo, et al. Enhanced 3.9 μm emission from diode pumped Ho3+/Eu3+ codoped fluoroindate glasses[J]. Opt Lett, 2021, 46(9): 2031-2034.
[118] [118] SWIDERSKI J, THEBERGE F, MICHALSKA M, et al. High average power supercontinuum generation in a fluoroindate fiber[J].Laser Phys Lett, 2014, 11(1): 015106.
[119] [119] YANG Linyong, ZHANG Bin, JIN Donghuan, et al. All-fiberized,multi-watt 2-5 μm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency[J]. Opt Lett, 2018, 43:5206-5209.
[120] [120] WU T, YANG L, DOU Z, et al. Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber[J]. Opt Lett, 2019, 44: 2378-2381.
[121] [121] HOU Jing, YANG Linyong, ZHANG Bin, et al. High-power mid-infrared supercontinuum generation in a fluoroindate fiber with over 2 W power beyond 3.8 μm[J]. Opt Express, 2020, 28:14973-14979.
[122] [122] SCURRIA G, MANEK-HNNINGER I, CARRéE J Y, et al. 7 W mid-infrared supercontinuum generation up to 4.7 μm in an indium-fluoride optical fiber pumped by a high-peak power thulium-doped fiber single-oscillator[J]. Opt Express, 2020, 28:7672-7677.
[123] [123] THéBERGE F, BéRUBé N, POULAIN S, et al. Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers[J].Opt Express, 2018, 26: 13952-13960.
[124] [124] SWIDERSKI J, GRZES P. High-power mid-IR supercontinuum generation in fluoroindate and arsenic sulfide fibers pumped by a broadband 1.9-2.7 μm all-fiber laser source[J]. Opt Laser Technol,2021, 141: 107178.
[125] [125] FRISCHAT G H, HUEBER B, RAMDOHR B. Chemical stability of ZrF4- and AlF3-based heavy metal fluoride glasses in water[J]. J Non-Cryst Solids, 2001, 284(1-3): 105-109.
[126] [126] HUANG F, MA Y, LI W, et al. 2.7 μm emission of high thermally and chemically durable glasses based on AlF3[J]. Sci Rep, 2014, 4:3607.
[127] [127] MAZUKI A, JHA A. Effect of Pb-ions on the kinetics of devitrification and viscosities of AlF3-based glasses for waveguide fabrication[J]. J Non-Cryst Solids, 2007, 353(13-15): 1283-1286.
[128] [128] TIKHOMIROV V K, ROLLI R, MONTAGNA M, et al. Efficient visible up-conversion emission in Pr3+- and Er3+-doped aluminum fluorophospate glasses[C]//Proc. SPIE 3942, Rare-Earth-Doped Materials and Devices IV, 2000.
[129] [129] BABITSYNA A A, EMEL’YANOVA T A, ZHUKOV E G. et al. Glass formation in the fluorozirconate systems containing lead fluoride[J]. Glass Phys Chem, 2007, 33: 545-549.
[130] [130] NISHIBU S, YONEZAWA S, TAKASHIMA M. Preparation and optical properties of HoF3-BaF2-AlF3-GeO2 glasses[J]. J Non-Cryst Solids, 2005, 351(14/15): 1239-1245.
[131] [131] MALLIK A, PAL B. Studies on preparation and property evaluation of some Tm3+-ion doped oxyfluorophosphate glasses[J]. Mater Sci Eng: B, 2014, 179: 77-83.
[132] [132] HAMDY Y M, BAHAMMAM S, ABD E A S, et al. Spectroscopic properties and luminescence behavior of γ-irradiated Sm3+ doped oxy-fluoride phosphate glasses[J]. Physics, 2017, 7: 1223-1229.
[133] [133] KLINKOV V A, SEMENCHA A V, BABKINA A N, et al.Theoretical and experimental behavior of optical properties of Er3+ doped fluoroaluminate glasses[J]. Mater Res Bull, 2021, 141: 111352.
[134] [134] QIA Fangwei, HUANG Feifei, ZHOU Lingfeng, et al. Low-hydroxy Dy3+/Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties[J]. J Lumin, 2017, 190: 392-396.
[135] [135] NAFTALY M, BATCHELOR C, JHA A. Pr3+-doped fluoride glass for a 589 nm fibre laser[J]. J Lumin, 2000, 91(3-4): 133-138.
[136] [136] ROLLI R, RONCHIN S, MONTAGNA M, et al. Yellow-to-blue frequency upconversion in Pr3+-doped aluminium fluoride glasses[J].J Non-Cryst Solids, 2001, 280(1-3): 269-276.
[137] [137] FUJIMOTO Y, ISHII O, YAMAZAKI M. 575 nm laser oscillation in Dy3+-doped waterproof fluoro-aluminate glass fiber pumped by violet GaN laser diodes[C]//Proc. SPIE 7912, Solid State Lasers XX: Technology and Devices, 2011.
[141] [141] ZHOU Beier, WEI Tao, CAI Muzhi, et al. Analysis on energy transfer process of Ho3+ doped fluoroaluminate glass sensitized by Yb3+ for mid-infrared 2.85 μm emission[J]. J Quant Spectr Radiat Transfer, 2014, 149: 41-50.
[142] [142] ZHANG Jiquan, WANG Ruicong, WANG Xin, et al. Efficient 3.5μm mid-infrared emission in heavily Er3+-doped fluoroaluminate glasses and its emission mechanism[J]. J Lum, 2021, 238: 118301.
[143] [143] NAFTALY M, JHA A. Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier[J]. J App Phys, 2000, 87: 2098.
[144] [144] ZHANG Jiquan, LIU Xing, XU Nianian, et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 μm lasing[J]. Laser Phys, 2018,28, 015802.
[146] [146] ZHANG Jiquan, ZHAO Haiyan, WANG Ruicong, et al.3.9 μm emission in Nd3+ sensitized Ho3+ doped fluoroaluminate glasses[J]. J Alloys Compd, 2021, 46(9): 2031-2034.
Get Citation
Copy Citation Text
LIU Ruite, JIANG Yiguang, ZHANG Longfei, ZHOU Zhiming, ZHANG Long. Mid-Infrared Fluoride Glass Fibers - A Short Review[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1085
Category:
Received: Nov. 29, 2021
Accepted: --
Published Online: Nov. 13, 2022
The Author Email: Ruite LIU (312802163@qq.com)