Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 1(2024)
Fabrication and Performance of Co Substituted Sr0.95Ti0.4Fe0.6O3-δ Anode SOFC under Hydrogen Blend Natural Gas Fuels
[1] [1] FAN L, ZHU B, SU P, et al. Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities[J]. Nano Energy, 2018, 45: 148-176.
[2] [2] ATKINSON A, BARNETT S, GORTE R J, et al. Advanced anodes for high-temperature fuel cells[J]. Nat Mater, 2004, 3(1): 17-27.
[3] [3] ABDALLA A M, HOSSAIN S, AZAD A T, et al. Nanomaterials for solid oxide fuel cells: a review[J]. Renew Sust Energ Rev, 2018, 82: 353-368.
[4] [4] CHAN S, KHOR K, XIA Z. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness[J]. J Power Sources, 2001, 93(1/2): 130-140.
[5] [5] CHOUDHURY A, CHANDRA H, ARORA A. Application of solid oxide fuel cell technology for power generation-A review[J]. Renew Sust Energ Rev, 2013, 20: 430-442.
[6] [6] NAPOLI R, GANDIGLIO M, LANZINI A, et al. Techno-economic analysis of PEMFC and SOFC micro-CHP fuel cell systems for the residential sector[J]. Energy Build, 2015, 103: 131-146.
[9] [9] SUN C, STIMMING U. Recent anode advances in solid oxide fuel cells[J]. J Power Sources, 2007, 171(2): 247-260.
[10] [10] CHENG Z, WANG J, CHOI Y, et al. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives[J]. Energy Environ Sci, 2011, 4(11): 4380-4409.
[11] [11] ZHANG J, HAN F, LI C, et al. Electrochemical performance investigation of Sr(Ti1-xFex)O3-δ fuel electrodes with different Fe contents for solid oxide electrochemical cells[J]. J Electrochem Soc, 2022, 169(4): 044520.
[13] [13] ZHU T, TROIANI H, MOGNI L, et al. Exsolution and electrochemistry in perovskite solid oxide fuel cell anodes: role of stoichiometry in Sr(Ti, Fe, Ni)O3-δ[J]. J Power Sources, 2019, 439: 227077.
[14] [14] ZHU T, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr(Ti, Fe)O3-δ SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2(3): 478-496.
[15] [15] GLASER R, ZHU T, TROIANI H, et al. The enhanced electrochemical response of Sr(Ti0.3Fe0.7Ru0.07)O3-δ anodes due to exsolved Ru-Fe nanoparticles[J]. J Mater Chem A, 2018, 6(12): 5193-5201.
[16] [16] ZHANG S, WANG H, LU M, et al. Cobalt-substituted SrTi0.3Fe0.7O3-δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells[J]. Energy Environ Sci, 2018, 11(7): 1870-1879.
[17] [17] NENNING A, VOLGGER L, MILLER E, et al. The electrochemical properties of Sr(Ti, Fe)O3-δ for anodes in solid oxide fuel cells[J]. J Electrochem Soc, 2017, 164(4): F364-F371.
[18] [18] CHEN X, NI W, WANG J, et al. Exploration of Co-Fe alloy precipitation and electrochemical behavior hysteresis using Lanthanum and Cobalt co-substituted SrFeO3-δ SOFC anode[J]. Electrochim Acta, 2018, 277: 226-234.
[19] [19] OHNUMA I, ENOKI H, IKEDA O, et al. Phase equilibria in the Fe-Co binary system[J]. Acta Mater, 2002, 50(2): 379-393.
[20] [20] XI X, WANG X, FAN Y, et al. Efficient bifunctional electrocatalysts for solid oxide cells based on the structural evolution of perovskites with abundant defects and exsolved CoFe nanoparticles[J]. J Power Sources, 2021, 482: 228981.
[21] [21] AMAYA-DUE-AS D, RIEGRAF M, NENNING A, et al. Operational aspects of a perovskite chromite-based fuel electrode in solid oxide electrolysis cells (SOEC)[J]. ACS Appl Energy Mater, 2022, 5(7): 8143-8156.
Get Citation
Copy Citation Text
ZHANG Wanchen, LYU Qiuqiu, ZHU Tenglong, ZHONG Qin. Fabrication and Performance of Co Substituted Sr0.95Ti0.4Fe0.6O3-δ Anode SOFC under Hydrogen Blend Natural Gas Fuels[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 1
Received: Jul. 7, 2023
Accepted: --
Published Online: Jul. 30, 2024
The Author Email: Tenglong ZHU (zhutenglong@njust.edu.cn)
CSTR:32186.14.