Acta Geographica Sinica, Volume. 75, Issue 9, 1907(2020)
[1] Harden J W, Trunbore S E, Stocks B J et al. The role of fire in the boreal carbon budget[J]. Global Change Biology, 6, 174-184(2000).
[5] Flannigan M D, Krawchuk M A, de Groot W J et al. Implications of changing climate for global wildland fire[J]. International Journal of Wildland Fire, 18, 483-507(2009).
[7] Cochrane M A, Barber C P. Climate change, human land use and future fires in the Amazon[J]. Global Change Biology, 15, 601-612(2009).
[8] Pechony O, Shindell D T. Driving forces of global wildfires over the past millennium and the forthcoming century[C]. Proceedings of the National Academy of Sciences of USA, 107, 19167-19170(2010).
[9] van der Werf G R, Randerson J T, Giglio L et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)[J]. Atmospheric Chemistry and Physics, 10, 11707-11735(2010).
[10] Turetsky M R, Benscoter B, Page S et al. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 8, 11-14(2015).
[11] van der Werf G R, Randerson J T, Giglio L et al. Global fire emissions estimates during 1997-2016[J]. Earth System Science Data, 9, 697-720(2017).
[12] Jolly W M, Cochrane M A, Freeborn P H et al. Climate-induced variations in global wildfire danger from 1979 to 2013[J]. Nature Communications, 6, 1-11(2015).
[15] Lee H-H, Bar-Or R Z, Wang C. Biomass burning aerosols and the low-visibility events in Southeast Asia[J]. Atmospheric Chemistry and Physics, 17, 965-980(2017).
[16] Marlier M E, DeFries R S, Voulgarakis A et al. El Niño and health risks from landscape fire emissions in southeast Asia[J]. Nature Climate Change, 3, 131-136(2013).
[18] Ketterings Q M, Tri Wibowo T, van Noordwijk M et al. Farmers' perspectives on slash-and-burn as a land clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra, Indonesia[J]. Forest Ecology and Management, 120, 157-169(1999).
[20] Wösten J H M, Clymans E, Page S E et al. Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia[J]. Catena, 73, 212-224(2008).
[22] Ott L, Duncan B, Pawson S et al. Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS-5 AGCM[J]. Journal of Geophysical Research, 115, 1-16(2010).
[23] Heil A, Goldammer J G. Smoke-haze pollution: A review of the 1997 episode in Southeast Asia[J]. Regional Environmental Change, 2, 24-37(2001).
[24] Jones D S. ASEAN and transboundary haze pollution in Southeast Asia[J]. Asia Europe Journal, 4, 431-446(2006).
[27] Wooster M J, Perry G L W, Zoumas A. Fire, drought and El Nino relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980-2000)[J]. Biogeosciences, 9, 317-340(2012).
[28] Kogan F, Guo W. Strong 2015-2016 El Niño and implication to global ecosystems from space data[J]. International Journal of Remote Sensing, 38, 161-178(2017).
[29] Heil A, Langmann B, Aldrian E. Indonesian peat and vegetation fire emissions: Study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model[J]. Mitigation and Adaptation Strategies for Global Change, 12, 113-133(2006).
[30] Field R D, van der Werf G R, Fanin T et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought[C]. Proceedings of the National Academy of Sciences of USA, 113, 9204-9209(2016).
[32] Pan X, Chin M, Ichoku C M et al. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979-2016[J]. Journal of Geophysical Research: Atmospheres, 123, 7974-7988(2018).
[34] Aldrian E, Dwi Susanto R. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature[J]. International Journal of Climatology, 23, 1435-1452(2003).
[35] Davies D K, Ilavajhala S, Min M W et al. Fire information for resource management system: Archiving and distributing MODIS active fire data[J]. IEEE Transactions on Geoscience and Remote Sensing, 47, 72-79(2009).
[36] Giglio L, Descloitres J, Justice C O et al. An enhanced contextual fire detection algorithm for MODIS[J]. Remote Sensing of Environment, 87, 273-282(2003).
[37] Schroeder W, Oliva P, Giglio L et al. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment[J]. Remote Sensing of Environment, 143, 85-96(2014).
[39] [39] LiPeng, LiWenjun, FengZhiming, et al. Spatiotemporal dynamics of active fire frequency in Southeast Asia with the FIRMS Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer (VIIRS) data. Resources Science, 2019,41(8):1526-1540. [ 李鹏, 李文君, 封志明, 等. 基于FIRMS MODIS与VIIRS的东南亚活跃火频次时空动态分析. 资源科学, 2019,41(8):1526-1540.] [李鹏, 李文君, 封志明, 等. 基于FIRMS MODIS与VIIRS的东南亚活跃火频次时空动态分析. 资源科学, 2019, 41(8): 1526-1540.]
[41] Chen Y, Morton D C, Andela N et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation[J]. Nature Climate Change, 7, 906-911(2017).
Get Citation
Copy Citation Text
Jia LIU, Yihang LIANG, Peng LI, Chiwei XIAO.
Received: Oct. 23, 2019
Accepted: --
Published Online: Apr. 14, 2021
The Author Email: