Bulletin of the Chinese Ceramic Society, Volume. 42, Issue 7, 2579(2023)
Application of Thermally Stimulated Depolarization Current Technique in Inorganic Materials
[1] [1] HU W B, LIU Y, WITHERS R L, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials[J]. Nature Materials, 2013, 12(9): 821-826.
[2] [2] BRUNLICH P. Thermally stimulated relaxation in solids[A]. New York: Springer, 1979.
[3] [3] HINO T. Thermally stimulated characteristics in solid dielectrics[J]. IEEE Transactions on Electrical Insulation, 1980, EI-15(3): 301-311.
[4] [4] LIU W, RANDALL C A. Thermally stimulated relaxation in Fe-doped SrTiO3systems: I. single crystals[J]. Journal of the American Ceramic Society, 2008, 91(10): 3245-3250.
[5] [5] YOON S H, RANDALL C A, HUR K H. Correlation between resistance degradation and thermally stimulated depolarization current in acceptor (Mg)-doped BaTiO3 submicrometer fine-grain ceramics[J]. Journal of the American Ceramic Society, 2010, 93(7): 1950-1956.
[6] [6] LIU W, RANDALL C A. Thermally stimulated relaxation in Fe-doped SrTiO3 systems: II. degradation of SrTiO3 dielectrics[J]. Journal of the American Ceramic Society, 2008, 91(10): 3251-3257.
[7] [7] YOON S H, RANDALL C A, HUR K H. Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-doped BaTiO3 bulk ceramics: II. thermally stimulated depolarization current analysis[J]. Journal of the American Ceramic Society, 2009, 92(8): 1766-1772.
[8] [8] YOON S H, PARK J S, KIM S H, et al. Thermally stimulated depolarization current analysis for the dielectric aging of Mn and V-codoped BaTiO3 multi layer ceramic capacitor[J]. Applied Physics Letters, 2013, 103(4): 042901.
[9] [9] YOON S H, KIM S H, KIM D Y. Correlation between I (current)-V (voltage) characteristics and thermally stimulated depolarization current of Mn-doped BaTiO3 multilayer ceramic capacitor[J]. Journal of Applied Physics, 2013, 114(7): 074102.
[10] [10] LEE H, KIM J R, LANAGAN M J, et al. High-energy density dielectrics and capacitors for elevated temperatures: Ca(Zr, Ti)O3[J]. Journal of the American Ceramic Society, 2013, 96(4): 1209-1213.
[11] [11] RANDALL C A, MAIER R, QU W, et al. Improved reliability predictions in high permittivity dielectric oxide capacitors under high dc electric fields with oxygen vacancy induced electromigration[J]. Journal of Applied Physics, 2013, 113(1): 014101.
[12] [12] AKKOPRU-AKGUN B, MARINCEL D M, TSUJI K, et al. Thermally stimulated depolarization current measurements on degraded lead zirconate titanate films[J]. Journal of the American Ceramic Society, 2021, 104(10): 5270-5280.
[13] [13] PHOTOPOULOS P, TSONOS C, STAVRAKAS I, et al. A method for the calculation the activation energies of thermally stimulated depolarization current peaks: application in polyvinylidene fluoride/graphene nanocomposites[J]. Physica B: Condensed Matter, 2021, 622: 413338.
[14] [14] NASR G A, EL-SHERIF A, OMAR M, et al. TSDC studies of LASER irradiated and unirradiated PVDF composites doped with Pd(II) benzimidazole complex[J]. Journal of Multidisciplinary Engineering Science and Technology, 2022, 9(2): 15102-15111.
[15] [15] DIAZ J C C A, M’PEKO J C, VENET M, et al. Unveiling the high-temperature dielectric response of Bi0.5Na0.5TiO3[J]. Scientific Reports, 2020, 10(1): 1-11.
[16] [16] ZHANG X H, YUE Z X, PENG B, et al. Polarization response and thermally stimulated depolarization current of BaTiO3-based Y5V ceramic multilayer capacitors[J]. Journal of the American Ceramic Society, 2014, 97(9): 2921-2927.
[17] [17] ZHANG X H, ZHANG Y, ZHANG J, et al. Microwave dielectric properties and thermally stimulated depolarization currents study of (1-x)Ba0.6Sr0.4La4Ti4O15-xTiO2 ceramics[J]. Journal of the American Ceramic Society, 2014, 97(10): 3170-3176.
[18] [18] XIE Y M, ZANG H, CENG W D, et al. Thermally stimulated depolarization current properties of Co4Nb2O9 ceramics[J]. Journal of the American Ceramic Society, 2019, 102(6): 3432-3437.
[19] [19] ZHANG X H, ZHANG J, ZHANG Y, et al. Microwave dielectric properties and thermally stimulated relaxations of Ba0.6Sr0.4La4Ti4O15-TiO2 composite ceramics by flowing oxygen sintering[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(4): 3400-3406.
[20] [20] ZHANG J, YUE Z X, ZHOU Y Y, et al. Temperature-dependent dielectric properties, thermally-stimulated relaxations and defect-property correlations of TiO2 ceramics for wireless passive temperature sensing[J]. Journal of the European Ceramic Society, 2016, 36(8): 1923-1930.
[21] [21] ZHANG J, YUE Z X, ZHOU Y Y, et al. Microwave dielectric properties and thermally stimulated depolarization currents of (1-x)MgTiO3-xCa0.8Sr0.2TiO3 ceramics[J]. Journal of the American Ceramic Society, 2015, 98(5): 1548-1554.
[22] [22] ZHANG X H, ZHANG J, ZHOU Y Y, et al. Colossal permittivity and defect-dipoles contribution for Ho0.02Sr0.97TiO3 ceramics[J]. Journal of Alloys and Compounds, 2018, 767: 424-431.
[23] [23] ZHANG X H, ZHANG J, XIE Z K, et al. Structure, microwave dielectric properties and thermally stimulated depolarization currents of (1-x)Ba0.6Sr0.4La4Ti4O15-xBa5Nb4O15 solid solutions[J]. Journal of the American Ceramic Society, 2015, 98(4): 1245-1252.
[24] [24] ZHANG X H, ZHANG L, ZHANG J, et al. Dielectric response and thermally stimulated depolarization current analysis of BaNd1.76Bi0.24Ti5O14 high-temperature microwave capacitors[J]. Journal of Materials Science, 2015, 50(3): 1141-1149.
[25] [25] ZHANG J, ZHOU Y Y, YUE Z X, et al. Microwave dielectric properties and thermally stimulated depolarization currents of (1-x)Ba(Mg1/3Nb2/3)O3-xBaSnO3 solid solutions[J]. Journal of the American Ceramic Society, 2015, 98(12): 3942-3947.
[26] [26] ZHANG J, ZHOU Y Y, PENG B, et al. Microwave dielectric properties and thermally stimulated depolarization currents of MgF2-doped diopside ceramics[J]. Journal of the American Ceramic Society, 2014, 97(11): 3537-3543.
[27] [27] ZHANG J, YUE Z X, LI L T. Crystal structure, defect relaxation, and microwave dielectric properties of Ba [(Mg1/3Nb2/3)1-xHfx]O3 solid solutions[J]. Journal of the American Ceramic Society, 2018, 101(5): 1974-1981.
[28] [28] ZHANG J, YUE Z X, LUO Y, et al. Understanding the thermally stimulated relaxation and defect behavior of Ti-containing microwave dielectrics: a case study of BaTi4O9[J]. Materials & Design, 2017, 130: 479-487.
[29] [29] GUO W J, ZHANG J, LUO Y, et al. Microwave dielectric properties and thermally stimulated depolarization of Al-doped Ba4(Sm, Nd)9.33Ti18O54 ceramics[J]. Journal of the American Ceramic Society, 2019, 102(9): 5494-5502.
[30] [30] ZHANG X H, ZHANG J, ZHOU Y Y, et al. Highly accelerated resistance degradation and thermally stimulated relaxation in BaTiO3-based multilayer ceramic capacitors with Y5V specification[J]. Journal of Alloys and Compounds, 2016, 662: 308-314.
[31] [31] ZHANG M H, WANG K, DU Y J, et al. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite[J]. Journal of the American Chemical Society, 2017, 139(10): 3889-3895.
[32] [32] WANG K, HUSSAIN A, JO W, et al. Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics[J]. Journal of the American Ceramic Society, 2012, 95(7): 2241-2247.
[33] [33] CEN Z Y, HUAN Y, FENG W, et al. A high temperature stable piezoelectric strain of KNN-based ceramics[J]. Journal of Materials Chemistry A, 2018, 6(41): 19967-19973.
[34] [34] HUAN Y, WANG X H, WEI T, et al. Defect engineering of high-performance potassium sodium niobate piezoelectric ceramics sintered in reducing atmosphere[J]. Journal of the American Ceramic Society, 2017, 100(5): 2024-2033.
[35] [35] SHI Y Z, ZHANG L, ZHANG J, et al. Thermally stimulated depolarization currents and dielectric properties of Mg0.95Ca0.05TiO3 filled HDPE composites[J]. AIP Advances, 2017, 7(12): 125315.
[36] [36] ZHANG L, ZHANG J, YUE Z X, et al. Thermally stable polymer-ceramic composites for microwave antenna applications[J]. Journal of Advanced Ceramics, 2016, 5(4): 269-276.
Get Citation
Copy Citation Text
ZHANG Xiaohua, ZHANG Yutao, ZHANG Jie, SHI Yunzhou, QU Haimo, ZHANG Li, ZHANG Yao, LUO Yu, BIAN Shuaishuai, GUO Weijia, CHEN Yugu, YUE Zhenxing. Application of Thermally Stimulated Depolarization Current Technique in Inorganic Materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2579
Category:
Received: Feb. 3, 2023
Accepted: --
Published Online: Nov. 1, 2023
The Author Email: Xiaohua ZHANG (zhangcity@126.com)
CSTR:32186.14.