Journal of the Chinese Ceramic Society, Volume. 50, Issue 12, 3116(2022)
Thermally Enhanced High-sensitivity Temperature Probe ScF3: Nd3+/Yb3+/Er3+ Based on Negative Thermal Expansion
[1] [1] CHEN J, NING C, ZHOU Z, et al. Nanomaterials as photothermal therapeutic agents[J]. Prog Mater Sci, 2019, 99: 1-26.
[2] [2] DOUGHTY A C V, HOOVER A R, LAYTON E, et al. Nanomaterial applications in photothermal therapy for cancer[J]. Materials, 2019, 12(5): 779.
[3] [3] SUO H, ZHAO X, ZHANG Z, et al. Upconverting LuVO4: Nd3+/Yb3+/ Er3+@SiO2@Cu2S hollow nanoplatforms for self-monitored photothermal ablation[J]. ACS Appl Mater, 2018, 10(46): 39912-39920.
[4] [4] DENG X, LI K, CAI X, et al. A hollow-structured CuS@Cu2S@ Au nanohybrid: synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics[J]. Adv Mater, 2017, 29(36): 1701266.
[5] [5] DU P, DENG A M, LUO L, et al. Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for a non-invasion optical thermometer[J]. New J Chem, 2017, 41(22): 13855-13861.
[6] [6] CAO B, BAO Y, LIU Y, et al. Wide-range and highly-sensitive optical thermometers based on the temperature-dependent energy transfer from Er to Nd in Er/Yb/Nd codoped NaYF4 upconversion nanocrystals[J]. Chem Eng J, 2020, 385: 123906.
[7] [7] FENG J, TIAN K, HU D, et al. A Triarylboron-based fluorescent thermometer: sensitive over a wide temperature range[J]. Angew Chem Int Ed, 2011, 123(35): 8222-8226.
[8] [8] ZHAO Y, WANG X, ZHANG Y, et al. Optical temperature sensing of up-conversion luminescent materials: fundamentals and progress[J]. J Alloys Compd, 2020, 817: 152691.
[9] [9] ZHANG J, LI X, CHEN G. Upconversion luminescence of Ba9Y2Si6O24: Yb3+-Ln3+ (Ln=Er, Ho, and Tm) phosphors for temperature sensing[J]. Mater Chem Phys, 2018, 206: 40-47.
[10] [10] SUO H, ZHAO X, ZHANG Z, et al. Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry[J]. Chem Eng J, 2017, 313: 65-73.
[11] [11] SUO H, HU F,ZHAO X, et al. All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window[J]. J Mater Chem C, 2017, 5(6): 1501-1507.
[12] [12] SUO H, ZHAO X, ZHANG Z, et al. Ultra-sensitive optical nano-thermometer LaPO4: Yb3+/Nd3+ based on thermos-enhanced nir-to-nir emissions[J]. Chem Eng J, 2020, 389: 124506.
[13] [13] FISCHER L H, HARMS G S, WOLFBEIS O S. Upconverting nanoparticles for nanoscale thermometry[J]. Angew Chem Int Ed, 2011, 50(20): 4546-4551.
[14] [14] LAIA A S, HORA D A, REZENDE M V S, et al. Nd3+doped LiBaPO4 phosphors for optical temperature sensing within the first biological window: a new strategy to increase the sensitivity[J]. Chem Eng J, 2020, 399: 125742.
[15] [15] DU P, HOU Y, LI W, et al. Ultra-high sensitivity of multicolor Sm3+doped LiSrVO4 phosphors for contactless optical thermometers[J]. Dalton Trans, 2020, 49(29): 10224-10231.
[16] [16] SUO H, ZHAO X, ZHANG Z, et al. Rational design of ratiometric luminescence thermometry based on thermally coupled levels for bioapplications[J]. Laser Photon Rev, 2021, 15(1): 2000319.
[17] [17] XUE J, NOH H M, CHOI B C, et al. Dual-functional of non-contact thermometry and field emission displays via efficient Bi3+→Eu3+ energy transfer in emitting-color tunable GdNbO4 phosphors[J]. Chem Eng J, 2020, 382: 122861.
[18] [18] ZOU H, YANG X, CHEN B, et al. Thermal enhancement of upconversion by negative lattice expansion in orthorhombic
[19] [19] LV H, DU P, LUO L, et al. Negative thermal expansion triggered anomalous thermal upconversion luminescence behaviors in Er3+/Yb3+-codoped Y2Mo3O12 microparticles for highly sensitive thermometry[J]. Mater Adv, 2021, 2(8): 2642-2648.
[20] [20] RüDEL R, Zite-Ferenczy F. Interpretation of light diffraction by cross-striated muscle as Bragg reflexion of light by the lattice of contractile proteins[J]. J Phys, 1979, 290(2): 317-330.
[21] [21] HU L, CHEN J, Sanson A, et al. New insights into the negative thermal expansion: Direct experimental evidence for the “guitar-string” effect in cubic ScF3[J]. J Am Chem Soc, 2016, 138(27): 8320-8323.
[22] [22] CLAPP A R, MEDINTZ I L, MATTOUSSI H. F.rster resonance energy transfer investigations using quantum‐dot fluorophores[J]. ChemPhysChem, 2006, 7(1): 47-57.
[23] [23] JIN M, WU Y, ZHANG Z, et al. Excitation wavelength-dependent multi-color emitting phosphor Ba2GdTaO6: Mn4+, Er3+ for application in anti-counterfeiting[J]. Opt Laser Technol, 2022, 152: 108144.
[24] [24] WANG Y, CHEN B, WANG F. Overcoming thermal quenching in upconversion nanoparticles[J]. Nanoscale, 2021, 13(6): 3454-3462.
[25] [25] WU Y, SUO H, HE D, et al. Highly sensitive up-conversion optical thermometry based on Yb3+-Er3+ co-doped NaLa(MoO4)2 green phosphors[J]. Mater Res Bull, 2018, 106: 14-18.
[26] [26] ZHAO Y, BAI G, HUA Y, et al. Optical thermometry based on upconversion emission of Yb3+/Er3+ codoped bismuth titanate microcrystals[J]. J Lumin, 2020, 221: 117037.
[27] [27] LIU M, GU M, TIAN Y, et al. Multfunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties[J]. J Mater Chem C, 2017, 5(16): 4025-4033.
[28] [28] JIN M, XIANG J, CHEN Y, et al. Optically thermometric sensitivities of Er3+/Yb3+ Co-doped hosts with different phonon energy[J]. J Lumin, 2022, 244: 118692.
[29] [29] CHEN S, SONG W, CAO J, et al. Highly sensitive optical thermometer based on FIR technique of transparent NaY2F7: Tm3+/Yb3+ glass ceramic[J]. J Alloys Compd, 2020, 825: 154011.
[30] [30] WU Y, SUO H, HE D, et al. Highly sensitive up-conversion optical thermometry based on Yb3+-Er3+ co-doped NaLa(MoO4)2 green phosphors[J]. Mater Res Bull, 2018, 106: 14-18.
[31] [31] CHEN X, ZHENG Z, TENG L, et al. Self-calibrated optical thermometer based on luminescence from SrLu2O4: Bi3+, Eu3+ phosphors[J]. RSC Adv, 2018, 8(62): 35422-35428.
[32] [32] DING M, ZHANG M, LU C. Yb3+/Tm3+/Ho3+ tri-doped YPO4 submicroplates: a promising optical thermometer operating in the first biological window[J]. Mater Lett, 2017, 209: 52-55.
[33] [33] LOJPUR V, NIKOLIC M, MANCIC L, et al. Y2O3: Yb, Tm and Y2O3: Yb, Ho powders for low-temperature thermometry based on up-conversion fluorescence[J]. Ceram Int, 2013, 39(2): 1129-1134.
[34] [34] QIU X, ZHOU Q, ZHU X, et al. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique[J]. Nat Commun, 2020, 11(1): 1-9.
Get Citation
Copy Citation Text
JIN Minkun, XIANG Jinmeng, CHEN Changheng, LI Yuexin, TANG Jingjing, GUO Chongfen. Thermally Enhanced High-sensitivity Temperature Probe ScF3: Nd3+/Yb3+/Er3+ Based on Negative Thermal Expansion[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3116
Special Issue:
Received: Jun. 10, 2022
Accepted: --
Published Online: Jan. 20, 2023
The Author Email: Minkun JIN (530947377@qq.com)