Journal of Innovative Optical Health Sciences, Volume. 7, Issue 5, 1450019(2014)

The backbone stereochemistry influences the intracellular distribution and uptake mechanism of oligoarginines

Yan Ma1...2,3, Cheng Gong1,2, Yilong Ma1,2, and Yu-Hui Zhang12,* |Show fewer author(s)
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, P. R. China 430074
  • 2MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, P. R. China 430074
  • 3Wuhan Blood Center, Wuhan, P. R. China 430030
  • show less
    References(40)

    [1] [1] F. Heitz, M. C. Morris, G. Divita, "Twenty years of cell-penetrating peptides: From molecular mechanisms to therapeutics," Br. J. Pharmacol. 157, 195– 206 (2009).

    [2] [2] P. M. Fischer, "Cellular uptake mechanisms and potential therapeutic utility of peptidic cell delivery vectors: Progress 2001–2006," Med. Res. Rev. 27, 755–795 (2007).

    [3] [3] S. B. Fonseca, M. P. Pereira, S. O. Kelley, "Recent advances in the use of cell-penetrating peptides for medical and biological applications," Adv. Drug Deliv. Rev. 61, 953–964 (2009).

    [4] [4] P. A. Wender, D. J. Mitchell, K. Pattabiraman, E. T. Pelkey, L. Steinman, J. B. Rothbard, "The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters," Proc. Natl. Acad. Sci. USA 97, 13003–13008 (2000).

    [5] [5] D. J. Mitchell, L. Steinman, D. T. Kim, C. G. Fathman, J. B. Rothbard, "Polyarginine enters cells more efficiently than other polycationic homopolymers," J. Pept. Res. 56, 318–325 (2000).

    [6] [6] P. A. Wender, W. C. Galliher, E. A. Goun, L. R. Jones, T. H. Pillow, "The design of guanidiniumrich transporters and their internalization mechanisms," Adv. Drug Deliv. Rev. 60, 452–472 (2008).

    [7] [7] I. A. Khalil, K. Kogure, S. Futaki, H. Harashima, "High density of octaarginine stimulates macropinocytosis leading to efficient intracellular traf- ficking for gene expression," J. Biol. Chem. 281, 3544–3551 (2006).

    [8] [8] A. Mann, G. Thakur, V. Shukla, M. Ganguli, "Peptides in DNA delivery: Current insights and future directions," Drug Discov. Today 13, 152–160 (2008).

    [9] [9] B. U. Samuel, B. Hearn, D. Mack, P. Wender, J. Rothbard, M. J. Kirisits, E. Mui, S. Wernimont, C. W. Roberts, S. P. Muench, D. W. Rice, S. T. Prigge, A. B. Law, R. McLeod, "Delivery of antimicrobials into parasites," Proc. Natl. Acad. Sci. USA 100, 14281–14286 (2003).

    [10] [10] T. A. Aguilera, E. S. Olson, M. M. Timmers, T. Jiang, R. Y. Tsien, "Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides," Integr. Biol. 1, 371–381 (2009).

    [11] [11] P. A. Wender, E. A. Goun, L. R. Jones, T. H. Pillow, J. B. Rothbard, R. Shinde, C. H. Contag, "Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice," Proc. Natl. Acad. Sci. USA 104, 10340– 10345 (2007).

    [12] [12] K. Takayama, Y. Suehisa, T. Fujita, J. Nguyen, S. Futaki, A. Yamamoto, Y. Kiso, Y. Hayashi, "Oligoarginine-based prodrugs with self-cleavable spacers for Caco-2 cell permeation," Chem. Pharm. Bull. 56, 1515–1520 (2008).

    [13] [13] J. B. Delehanty, I. L. Medintz, T. Pons, F. M. Brunel, P. E. Dawson, H. Mattoussi, "Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery," Bioconjug. Chem. 17, 920–927 (2006).

    [14] [14] H. R gel, P. S lik, M. Hansen, ü. Langel,M. Pooga, "CPP-protein constructs induce a population of nonacidic vesicles during trafficking through endo-lysosomal pathway," J. Control. Release 139, 108–117 (2009).

    [15] [15] E. A. Goun, R. Shinde, K. W. Dehnert, A. Adams- Bond, P. A. Wender, C. H. Contag, B. L. Franc, "Intracellular cargo delivery by an octaarginine transporter adapted to target prostate cancer cells through cell surface protease activation," Bioconjug. Chem. 17, 787–796 (2006).

    [16] [16] J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, B. Lebleu, "Cell-penetrating peptides a reevaluation of the mechanism of cellular uptake," J. Biol. Chem. 278, 585–590 (2003).

    [17] [17] F. Duchardt, M. Fotin-Mleczek, H. Schwarz, R. Fischer, R. Brock, "A comprehensive model for the cellular uptake of cationic cell-penetrating peptides," Traffic 8, 848–866 (2007).

    [18] [18] I. Nakase, M. Niwa, T. Takeuchi, K. Sonomura, N. Kawabata, Y. Koike, M. Takehashi, S. Tanaka, K. Ueda, J. C. Simpson, A. T. Jones, Y. Sugiura, S. Futaki, "Cellular uptake of Arginine-rich peptides: Roles for macropinocytosis and actin rearrangement," Mol. Ther. 10, 1011–1022 (2004).

    [19] [19] R. Fischer, M. Fotin-Mleczek, H. Hufnagel, R. Brock, "Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides," ChemBioChem 6, 2126–2142 (2005).

    [20] [20] E. A. Goun, T. H. Pillow, L. R. Jones, J. B. Rothbard, P. A. Wender, "Molecular transporters: Synthesis of oligoguanidinium transporters and their application to drug delivery and real-time imaging," ChemBioChem 7, 1497–1515 (2006).

    [21] [21] C. Foerg, H. P. Merkle, "On the biomedical promise of cell penetrating peptides: Limits versus prospects," J. Pharm. Sci. 97, 144–162 (2008).

    [22] [22] A. El-Sayed, S. Futaki, H. Harashima, "Delivery of macromolecules using arginine-rich cell-penetrating peptides: Ways to overcome endosomal entrapment," AAPS J. 11, 13–22 (2009).

    [23] [23] M. M. Fretz, N. A. Penning, S. Al-Taei, S. Futaki, T. Takeuchi, I. Nakase, G. Storm, A. T. Jones, "Temperature-, concentration-and cholesteroldependent translocation of L-and D-octa-arginine across the plasma and nuclear membrane of CD34t leukaemia cells," Biochem. J. 403, 335–342 (2007).

    [24] [24] R. M. Martin, G. Tünnemann, H. Leonhardt, M. C. Cardoso, "Nucleolar marker for living cells," Histochem. Cell Biol. 127, 243–251 (2007).

    [25] [25] T. D. Mckee, J. Chen, I. Corbin, G. Zheng, R. Khokha, "Quantifying nanoparticle transport in vivo using hyperspectral imaging with a dorsal skinfold window chamber," J. Innov. Opt. Health. Sci. 5, 1250023 (2012).

    [26] [26] J. Guo, Z. Fan, Z. Gu, X. Wei, "Studying the role of macrophages in circulating prostate cancer cells by in vivo flow cytometry," J. Innov. Opt. Health. Sci. 5, 1250027 (2012).

    [27] [27] J. Qu, L. Liu, Y. Shao, H. Niu, B. Z. Gao, "Recent progress in multifocal multiphoton microscopy," J. Innov. Opt. Health. Sci. 5, 1250018 (2012).

    [28] [28] M. Ranji, S. Nioka, H. N. Xu, B. Wu, L. Z. Li, D. L. Jaggard, B. Chance, "Fluorescent images of mitochondrial redox states in in situ mouse hypoxic ischemic intestines," J. Innov. Opt. Health Sci. 2, 365–374 (2009).

    [29] [29] M. H llbrink, J. Oehlke, G. Papsdorf, M. Bienert, "Uptake of cell-penetrating peptides is dependent on peptide-to-cell ratio rather than on peptide concentration," Biochim. Biophys. Acta 1667, 222–228 (2004).

    [30] [30] A. Manceur, A. Wu, J. Audet, "Flow cytometric screening of cell-penetrating peptides for their uptake into embryonic and adult stem cells," Anal. Biochem. 364, 51–59 (2007).

    [31] [31] I. Massodi, G. L. Bidwell III, D. Raucher, "Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery," J. Control. Release 108, 396–408 (2005).

    [32] [32] T. Holm, H. Johansson, P. Lundberg, M. Pooga, M. Lindgren, ü. Langel, "Studying the uptake of cell-penetrating peptides," Nat. Protoc. 1, 1001– 1005 (2006).

    [33] [33] J. R. Maiolo, M. Ferrer, E. A. Ottinger, "Effects of cargo molecules on the cellular uptake of argininerich cell-penetrating peptides," Biochim. Biophys. Acta Biomembr. 1712, 161–172 (2005).

    [34] [34] A. Subtil, A. Hemar, A. Dautry-Varsat, "Rapid endocytosis of interleukin 2 receptors when clathrincoated pit endocytosis is inhibited," J. Cell Sci. 107, 3461–3468 (1994).

    [35] [35] M. A. West, M. S. Bretscher, C. Watts, "Distinct endocytotic pathways in epidermal growth factorstimulated human carcinoma A431 cells," J. Cell Biol. 109, 2731–2739 (1989).

    [36] [36] P. Keller, K. Simons, "Cholesterol is required for surface transport of influenza virus hemagglutinin," J. Cell Biol. 140, 1357–1367 (1998).

    [37] [37] T. B. Potocky, A. K. Menon, S. H. Gellman, "Cytoplasmic and nuclear delivery of a TAT-derived peptide and a β-peptide after endocytic uptake into HeLa cells," J. Biol. Chem. 278, 50188–50194 (2003).

    [38] [38] J. B. Rothbard, T. C. Jessop, P. A. Wender, "Adaptive translocation: The role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells," Adv. Drug Deliv. Rev. 57, 495–504 (2005).

    [39] [39] J. B. Rothbard, T. C. Jessop, R. S. Lewis, B. A. Murray, P. A. Wender, "Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells," J. Am. Chem. Soc. 126, 9506–9507 (2004).

    [40] [40] M. Kosuge, T. Takeuchi, I. Nakase, A. T. Jones, S. Futaki, "Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans, Bioconjug. Chem. 19, 656–664 (2008).

    Tools

    Get Citation

    Copy Citation Text

    Yan Ma, Cheng Gong, Yilong Ma, Yu-Hui Zhang. The backbone stereochemistry influences the intracellular distribution and uptake mechanism of oligoarginines[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1450019

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 9, 2013

    Accepted: --

    Published Online: Jul. 16, 2020

    The Author Email: Zhang Yu-Hui (zhangyh@mail.hust.edu.cn)

    DOI:10.1142/s1793545814500199

    Topics