Journal of Innovative Optical Health Sciences, Volume. 1, Issue 2, 267(2008)

SURFACE-ENHANCED RAMAN SCATTERING: PRINCIPLES, NANOSTRUCTURES, FABRICATIONS, AND BIOMEDICAL APPLICATIONS

CLEMENT YUEN... WEI ZHENG and ZHIWEI HUANG* |Show fewer author(s)
Author Affiliations
  • Bioimaging Laboratory, Department of Bioengineering Faculty of Engineering, National University of Singapore Singapore 117576
  • show less
    References(111)

    [1] [1] Raman, C. V. and Krishnan, K. S., “A new type of secondary radiation,” Nature 121, 501–502 (1928).

    [2] [2] Jeanmaire, D. L. and Van Duyne, R. P., “Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).

    [3] [3] Albrecht, M. G. and Creighton, J. A., “Anomalously intense Raman spectra of Pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5219 (1977).

    [4] [4] Fleischmann, M., Hendra, P. J. and McQuillan, A. J., “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).

    [5] [5] Haynes, C. L. and Van Duyne, R. P., “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426–7433 (2003).

    [6] [6] Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. and Feld, M. S., “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).

    [7] [7] Nie, S. M. and Emory, S. R., “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).

    [8] [8] Graham, D. and Goodacre, R., “Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy,” Chem. Soc. Rev. 37, 883–884 (2008).

    [9] [9] Volkan, M., Stokes, D. L. and Vo-Dinh, T., “Surface-enhanced Raman of dopamine and neurotransmitters using sol-gel substrates and polymer-coated fiber-optic probes,” Appl. Spectrosc. 54, 1842–1848 (2000).

    [10] [10] Lesuffleur, A., Kumar, L. K. S. and Gordon, R., “Apex-enhanced second-harmonic generation by using double-hole arrays in a gold film,” Phys. Rev. B 75, 45423 (2007).

    [11] [11] Aslan, K., Gryczynski, I., Malicka, J., Matveeva, E., Lakowicz, J. R. and Geddes, C. D., “Metal-enhanced fluorescence: An emerging tool in biotechnology,” Curr. Opin. Biotech. 16, 55–65 (2005).

    [12] [12] Coe, J. V., Heer, J. M., Teeters-Kennedy, S., Tian, H. and Rodriguez, K. R., “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59, 179–202 (2008).

    [13] [13] Bordenyuk, A. N., Weeraman, C., Yatawara, A., Jayathilake, H. D., Stiopkin, I., Yi, L. and Benderskii, A. V., “Vibrational sum frequency generation spectroscopy of dodecanethiol on metal nanoparticles,” J. Phys. Chem. 111, 8925–8933 (2007).

    [14] [14] Kneipp, K., Moskovits, M. and Kneipp, H., Surface-enhanced Raman Scattering: Physics and Application (Springer-Verlag, New York, 2006).

    [15] [15] Aroca, R., Surface-Enhanced Vibrational Spectroscopy (John Wiley & Sons Ltd., United Kingdom, 2006).

    [16] [16] Hewitt, K. C., Nano-Raman spectroscopy: Instrument design and techniques, Phys. Canada 62, 49–54 (2006).

    [17] [17] Kerker, M., “Estimation of surface-enhanced Raman scattering from surfaceaveraged electromagnetic intensities,” J. Colloid. Interf. Sci. 118, 417–421 (1987).

    [18] [18] McCall, S. L., Platzman, P. M. and Wolff, P. A., “Surface enhanced Raman scattering,” Phys. Lett. A 77A, 381–383 (1980).

    [19] [19] Kelly, K. L., Coronado, E., Zhao, L. L. and Schatz, G. C., “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).

    [20] [20] Hao, E. and Schatz, G. C., “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).

    [21] [21] Metiu, H. and Das, P., “The electromagnetic theory of surface enhanced spectroscopy,” Ann. Rev. Phys. Chem. 35, 507–536 (1984).

    [22] [22] Wu, D. Y., Li, J. F., Ren, B. and Tian, Z. Q., “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37, 1025–1041 (2008).

    [23] [23] Moskovits, M., “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).

    [24] [24] Otto, A., Billmann, J., Eickmans, J., Erturk, U. and Pettenkofer, C., “The ‘adatom model’ of SERS (surface enhanced Raman scattering): The present status,” Surf. Sci. 138, 319–338 (1984).

    [25] [25] Robinson, G. W., “Surface-enhanced Raman effect,” Chem. Phys. Lett. 76, 191–195 (1980).

    [26] [26] Creighton, J. A., Blatchford, C. G. and Albrecht, M. G., “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength,” J. Chem. Soc. Faraday Trans. 2, 75, 790–798 (1979).

    [27] [27] McCall, S. L. and Platzman, P. M., “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22, 1660–1662 (1980).

    [28] [28] Li, K. H., “A model of coherent parametric excitation for giant Raman effect,” Surf. Sci. 115, 513–523 (1982).

    [29] [29] Hu, C. K. and Huang, C. Y., “Cooperative effects in Raman scattering,” Opt. Commun. 43, 395–400 (1982).

    [30] [30] Jha, S. S., Kirtley, J. R. and Tsang, J. C., “Intensity of Raman scattering from molecules adsorbed on a metallic grating,” Phys. Rev. B 22, 3973–3982 (1980).

    [31] [31] Brundle, C. R. and Morawitz, H., Vibrations at Surface (Elsevier, Amsterdam, 1983).

    [32] [32] Tian, Z. Q., Ren, B. and Wu, D. Y., “Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106, 9463–9483 (2002).

    [33] [33] Huang, T. K., Chen, Y. C., Ko, H. C., Huang, H. W., Wang, C. H., Lin, H. K., Chen, F. R., Kai, J. J., Lee, C. Y. and Chiu, H. T., “Growth of high-aspect-ratio gold nanowires on silicon by surfactant-assisted galvanic reductions,” Langmuir 24, 5647–5649 (2008).

    [34] [34] Arya, K., “Scattering T-matrix theory in wave-vector space for surface-enhanced Raman scattering in clusters of nanoscale spherical metal particles,” Phys. Rev. B 74, 195438 (2006).

    [35] [35] Ringler, M., Schwemer, A., Wunderlich, M., Nichtl, A., Kurzinger, K., Klar, T. A. and Feldmann, J., “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).

    [36] [36] Kahraman, M., Tokman, N. and Culha, M., “Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering,” Chem. Phys. Chem. 9, 902– 910 (2008).

    [37] [37] Gunawidjaja, R., Peleshanko, S., Hyunhyub, K. and Tsukruk, V. V., “Bimetallic nanocobs: Decorating silver nanowires with gold nanoparticles,” Adv. Mater. 20, 1544–1549 (2008).

    [38] [38] Lal, S., Grady, N. K., Kundu, J., Levin, C. S., Lassiter, J. B. and Halas, N. J., “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37, 898–911 (2008).

    [39] [39] Oldenburg, S. J., Jackson, J. B., Westcott, S. L. and Halas, N. J., “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).

    [40] [40] Tong, L., Zhu, T. and Liu, Z., “Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement,” Appl. Phys. Lett. 92, 23109 (2008).

    [41] [41] Lezec, H. J., Degiron, A., Devaux, E., Linke, R. A., Martin-Moreno, L., Garcia-Vidal, F. J. and Ebbesen, T. W., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).

    [42] [42] Howle, C. R., Homer, C. J., Hopkins, R. J. and Reid, J. P., “Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering,” Phys. Chem. Chem. Phys. 9, 5344–5352 (2007).

    [43] [43] Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., Degiron, A. and Ebbesen, T. W., “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).

    [44] [44] Ebbesen, T.W., Lezec, H. J., Ghaemi, H. F., Thio, T. andWolff, P. A., “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

    [45] [45] Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A. and Nuzzo, R. G., “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).

    [46] [46] Suzuki, M., Maekita, W., Wada, Y., Nagai, K., Nakajima, K., Kimura, K., Fukuoka, T. and Mori, Y., “Ag nanorod arrays tailored for surface-enhanced Raman imaging in the near-infrared region,” Nanotechnology 19, 265304 (2008).

    [47] [47] Qian, X. M. and Nie, S. M., “Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37, 912–920 (2008).

    [48] [48] Park, K., Lee, J., Bhargava, R. and King, W. P., “Routine femtogram-level chemical analyses using vibrational spectroscopy and self-cleaning scanning probe microscopy tips,” Anal. Chem. 80, 3221–3228 (2008).

    [49] [49] Li, K. B., Clime, L. V., Cui, B. and Veres, T., “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19, 145305 (2008).

    [50] [50] Bae, Y., Kim, N. H., Kim, M., Lee, K. Y. and Han, S. W., “Anisotropic assembly of Ag nanoprism,” J. Am. Chem. Soc. 130, 5432–5433 (2008).

    [51] [51] Tao, A. R., Habas, S. and Yang, P. D., “Shape control of colloidal metal nanocrystals,” Small 4, 310–325 (2008).

    [52] [52] Kovacs, G. J., Loutfy, R. O. and Vincett, P. S., “Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: Evidence for the electromagnetic mechanism,” Langmuir 2, 689–694 (1986).

    [53] [53] Vickova, B., Gu, X. J., Tsai, D. P. and Moskovits, M., “Microscopic surface-enhanced Raman study of a single adsorbate-covered colloidal silver aggregate,” J. Phys. Chem. 100, 3169–3174 (1996).

    [54] [54] Pemberton, J. E., Guy, A. L., Sobocinski, R. L., Tuschel, D. D. and Cross, N. A., “Surface enhanced Raman scattering in electrochemical systems: The complex roles of surface roughness,” Appl. Surf. Sci. 32, 33–56 (1988).

    [55] [55] Barz, F., Gordon, J. G., Philpott, M. R. and Weaver, M. J., “Intense electrochemical SERS signal following hydrogen evolution,” Chem. Phys. Lett. 94, 168–171 (1983).

    [56] [56] Dick, L. A., McFarland, A. D., Haynes, C. L. and Van Duyne, R. P., “Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss,” J. Phys. Chem. B 106, 853–860 (2002).

    [57] [57] Reilly, T. H., Corbman, J. D. and Rowlen, K. L., “Vapor deposition method for sensitivity studies on engineered surface-enhanced Raman scattering-active substrates,” Anal. Chem. 79, 5078–5081 (2007).

    [58] [58] Driskell, J. D., Shanmukh, S., Liu, Y., Chaney, S. B., Tang, X. J., Zhao, Y. P. and Dluhy, R. A., “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).

    [59] [59] Tan, S. S., Erol, M., Sukhishvili, S. and Du, H., “Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surfaceenhanced Raman scattering,” Langmuir 24, 4765–4771 (2008).

    [60] [60] Sloufova, I., Siskova, K., Vlckova, B. and Stepanek, J., “SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: Formation of new reduced adsorption sites and induced nanoparticle fusion,” Phys. Chem. Chem. Phys. 10, 2233–2242 (2008).

    [61] [61] Howes, B. D., Guerrini, L., Sanchez-Cortes, S., Marzocchi, M. P., Garcia-Ramos, J. V. and Smulevich, G., “ The influence of pH and anions on the adsorption mechanism of rifampicin on silver colloids,” J. Raman Spectrosc. 38, 859–864 (2007).

    [62] [62] Kania, S. and Holze, R., “On the adsorption and redox catalysis of the oxalate anion and oxalato complexes on gold and metal-modified gold electrodes,” Electrochim. Acta 48, 945–950 (2003).

    [63] [63] Ahmadi, T. S.,Wang, Z. L.,Green, T. C., Henglein, A. and El-Sayed,M. A., “Shapecontrolled synthesis of colloidal platinum nanoparticles,” Science 272, 1924–1926 (1996).

    [64] [64] Lin, Z. H. and Chang, H. T., “Preparation of gold-tellurium hybrid nanomaterials for surface-enhanced raman spectroscopy,” Langmuir 24, 365–367 (2008).

    [65] [65] Bao, L. L., Mahurin, S. M., Haire, R. G. and Dai, S., “Silver-doped sol-gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions,” Anal. Chem. 75, 6614–6620 (2003).

    [66] [66] Zhao, N., Wei, Y., Sun, N. J., Chen, Q. J., Bai, J. W., Zhou, L. P., Qin, Y., Li, M. X. and Qi, L. M., “Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions,” Langmuir 24, 991–998 (2008).

    [67] [67] Kneipp, J., Li, X. T., Sherwood, M., Panne, U., Kneipp, H., Stockman, M. I. and Kneipp, K., “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem. 80, 4247–4251 (2008).

    [68] [68] Bhuvana, T. and Kulkarni, G. U., “A SERS-active nanocrystalline Pd substrate and its nanopatterning leading to biochip fabrication,” Small 4, 670–676 (2008).

    [69] [69] Shuiford, K. L., Lee, J., Odom, T. W. and Schatz, G. C., “Optical properties of gold pyramidal shells,” J. Phys. Chem. C 112, 6662–6666 (2008).

    [70] [70] Sung, J., Kosuda, K. M., Zhao, J., Elam, J. W., Spears, K. G. and Van Duyne, R. P., “Stability of silver nanoparticles fabricated by nanosphere lithography and atomic layer deposition to femtosecond laser excitation,” J. Phys. Chem. C 112, 5707–5714 (2008).

    [71] [71] Yuen, C., Wei, Z. and Huang, Z. W., “Saliva analysis using surface-enhanced Raman spectroscopy technique,” Proc. SPIE 6826, 682610 (2008).

    [72] [72] Pettinger, B., Ren, B., Picardi, G., Schuster, R. and Ertl, G., “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): Bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541–550 (2005).

    [73] [73] Beljebbar, A., Sockalingum, G. D., Angiboust, J. F. and Manfait, M., “Near-infrared FT-SERS microspectroscopy on silver and gold surfaces: Technical development, mass sensitivity, and biological applications,” Appl. Spectrosoc. 50, 148–153 (1996).

    [74] [74] Maeda, Y., Yamamoto, H. and Kitano, H., “Self-assembled monolayers as novel biomembrane mimetics. 1. Characterization of cytochrome c bound to self-assembled monolayers on silver by surface-enhanced resonance Raman spectroscopy,” J. Phys. Chem. 99, 4837–4841 (1995).

    [75] [75] Zeisel, D., Deckert, V., Zenobi, R. and Vo-Dinh, T., “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283, 381–385 (1998).

    [76] [76] Levi, G., Pantigny, J., Marsault, J. P., Christensen, D. H., Faurskov Nielsen, O. and Aubard, J., “Surface-enhanced Raman scattering of ellipticines adsorbed onto silver colloids,” J. Phys. Chem. 96, 926–931 (1992).

    [77] [77] Shafer-Peltier, K. E., Haynes, C. L., Glucksberg, M. R. and Van Duyne, R. P., “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125, 588–593 (2003).

    [78] [78] Wabuyele, M. B., Yan, F., Griffin, G. D. and Vo-Dinh, T., “Hyperspectral surfaceenhanced Raman imaging of labeled silver nanoparticles in single cells,” Rev. Sci. Instrum. 76, 063710 (2005).

    [79] [79] Vo-Dinh, T., Houck, K. and Stokes, D. L., “Surface-enhanced Raman gene probes,” Anal. Chem. 66, 3379–3383 (1994).

    [80] [80] Yezhelyev, M. V., Gao, X., Xing, Y., Al-Hajj, A., Nie, S. M. and O’Regan, R. M., “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006).

    [81] [81] Kneipp, K., Kneipp, H., Kartha, V. B., Manoharan, R., Deinum, G., Itzkan, I., Dasari, R. R. and Feld, M. S., “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281-R6284 (1998).

    [82] [82] Bailo, E. and Deckert, V., “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37, 921–930 (2008).

    [83] [83] Park, K., Lee, J., Bhargava, R. and King, W. P., “Routine femtogram-level chemical analyses using vibrational spectroscopy and self-cleaning scanning probe microscopy tips,” Anal. Chem. 80, 3221–3228 (2008).

    [84] [84] Hayazawa, N., Inouye, Y., Sekkat, Z. and Kawata, S., “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335, 369–374 (2001).

    [85] [85] Pettinger, B., Picardi, G., Schuster, R. and Ertl, G., “Surface enhanced Raman spectroscopy: Towards single molecular spectroscopy,” Electrochemistry 68, 942–949 (2000).

    [86] [86] Hildebrandt, P. and Stockburger, M. J., “Surface-enhanced resonance Ramanspectroscopy of rhodamine-6G adsorbed on colloidal silver,” Phys. Chem. 88, 5935– 5944 (1984).

    [87] [87] Graham, D. and Faulds, K., “Quantitative SERRS for DNA sequence analysis,” Chem. Soc. Rev. 37, 1042–1051 (2008).

    [88] [88] Deckert, V., Zeisel, D., Zenobi, R. and Vo-Dinh, T., “Near-field surface-enhanced Raman imaging of dye-labeled DNA with 100-nm resolution,” Anal. Chem. 70, 2646– 2650 (1998).

    [89] [89] Miskovsky, P., Jancura, D., Sanchez-Cortes, S., Kocisova, E. and Chinsky, L., “Antiretrovirally active drug hypericin binds the IIA subdomain of human serum albumin: Resonance Raman and surface-enhanced Raman spectroscopy study,” J. Am. Chem. Soc. 120, 6374–6379 (1998).

    [90] [90] Morjani, H., Rjou, J. F., Nabiev, I. R., Lavelle, F. and Manfait, M., “Molecular and cellular interactions between intoplicine, DNA, and topoisomerase II studied by surface-enahanced Raman scattering spectroscopy,” Cancer Res. 53, 4784–4790 (1993).

    [91] [91] Bell, S. E. J. and Sirimuthu, N. M. S., “Quantitative surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37, 1012–1024 (2008).

    [92] [92] Pieczonka, N. P. W. and Aroca, R. F., “Single molecule analysis by surfacedenhanced Raman scattering,” Chem. Soc. Rev. 37, 946–954 (2008).

    [93] [93] Kneipp, K., Haka, A. S., Kneipp, H., Badizadegan, K., Yoshizawa, N., Boone, C., Shafer-Peltier, K. E., Motz, J. T., Dasari, R. R. and Feld, M. S., “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56, 150–154 (2002).

    [94] [94] Vo-Dinh, T., Fei, Y. and Wabuyele, M. B., “Surface-enhanced Raman scattering for medical diagnostics and biological imaging,” J. Raman Spectrosc. 36, 640–647 (2005).

    [95] [95] Qian, X., Peng, X.H.,Ansari, D. O.,Goen, Q. Y., Chen, G. Z., Shin,D.M., Yang, L., Young, A. N., Wang, M. D. and Nie, S., “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26, 83–90 (2008).

    [96] [96] Culha, M., Stokes, D., Allain, L. R. and Vo-Dinh, T., “Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).

    [97] [97] Barhoumi, A., Zhang, D., Tam, F. and Halas, N. J., “Surface-enhanced resonance Raman spectroscopy of DNA,” J. Am. Chem. Soc. 130, 5523–5529 (2008).

    [98] [98] Vo-Dinh, T., Stokes, D. L., Griffin, G. D., Volkan, M., Kim, U. J. and Simon, M. I., “Surface-enhanced Raman scattering (SERS) method and instrumentation for genomics and biomedical ananlysis,” J. Raman Spectrosc. 30, 785–793 (1999).

    [99] [99] Monti, S., Manet, I., Manoli, F., Capobianco, M. L. and Marconi, G., “Gaining an insight into the photoreactivity of a drug in a protein environment: A case study on nalidixic acid and serum albumin,” J. Phys. Chem. B 112, 5742–5754 (2008).

    [100] [100] Narayanan, R., R. Lipert, J. and Porter, M. D., “Cetyltrimethylammonium bromidemodified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays,” Anal. Chem. 80, 2265–2271 (2008).

    [101] [101] Johnson, C. J., Zhukovsky, N., Cass, A. E. G. and Nagy, J. M., “Proteomics, nanotechnology and molecular diagnostics,” Proteomics 8, 715–730 (2008).

    [102] [102] Tom, R. T., Samal, A. K., Sreeprasad, T. S. and Pradeep, T., “Hemoprotein bioconjugates of gold and silver nanoparticles and gold nanorods: Structure function correlations,” Langmuir 23, 1320–1325 (2007).

    [103] [103] Kumar, G. V. P., Selvi, R., Kishore, A. H., Kundu, T. K. and Narayana, C., “Surfaceenhanced Raman, spectroscopic studies of coactivator-associated arginine methyltransferase 1,” J. Phys. Chem. B 112, 6703–6707 (2008).

    [104] [104] Bailo, E. and Deckert, V., “Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. 47, 1658–1661 (2008).

    [105] [105] Chowdhury, J., Sarkar, J., Tanaka, T. and Talapatra, G. B., “Concentrationdependent orientational changes of 2-amino-2-thiazoline molecule adsorbed on silver nanocolloidal surface investigated by SERS and DFT,” J. Phys. Chem. 112, 227–239 (2008).

    [106] [106] Jarvis, R. M. and Goodacre, R., “Characterization and identification of bacteria using SERS,” Chem. Soc. Rev. 37, 931–936 (2008).

    [107] [107] Isola, N. R., Stokes, D. L. and Vo-Dinh, T., “Surface enhanced Raman gene probe for HIV detection,” Anal. Chem. 70, 1352–1356 (1998).

    [108] [108] Lu, F., Zheng, W. and Huang, Z., “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).

    [109] [109] Lu, F., Zheng, W., Sheppard, C. and Huang, Z., “Interferometric polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 33(6), 602–604 (2008).

    [110] [110] Liu, C., Huang, Z., Lu, F., Zheng, W., Huntmacher, D. W. and Sheppard, C., “Nearfield effects on coherent anti-Stokes Raman scattering microscopy imaging,” Opt. Express. 15(7), 4119–4131(2007).

    [111] [111] Koo, T. W., Chan, S. and Berlin, A. A., “Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering,” Opt. Lett. 30(9), 1024– 1026 (2005).

    Tools

    Get Citation

    Copy Citation Text

    CLEMENT YUEN, WEI ZHENG, ZHIWEI HUANG. SURFACE-ENHANCED RAMAN SCATTERING: PRINCIPLES, NANOSTRUCTURES, FABRICATIONS, AND BIOMEDICAL APPLICATIONS[J]. Journal of Innovative Optical Health Sciences, 2008, 1(2): 267

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: --

    Accepted: --

    Published Online: Jan. 10, 2019

    The Author Email: HUANG ZHIWEI (biehzw@nus.edu.sg)

    DOI:

    CSTR:32186.14.

    Topics