Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 124(2023)
Facile Synthesis of High-Entropy (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O Nanopowder and
[1] [1] SHAO Y, EL-KADY M F, SUN J, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chem Rev, 2018, 118: 9233-9280.
[2] [2] ZHU Q, ZHAO D, CHENG M, et al. A new view of supercapacitors: Integrated supercapacitors[J]. Adv Energy Mater, 2019, 9: 1901081.
[3] [3] POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: Materials and devices[J]. J Energy Storage, 2019, 21: 801-825.
[4] [4] GONZ?LEZ A, GOIKOLEA E, BARRENA J A, et al. Review on supercapacitors: Technologies and materials[J]. Renew Sustain Energy Rev, 2016, 58: 1189-1206.
[5] [5] CHEN T, DAI L. Carbon nanomaterials for high-performance supercapacitors[J]. Mater Today, 2013, 16: 272-280.
[6] [6] SUN P, ZHANG S, BI H, et al. Tuning nitrogen species and content in carbon materials through constructing variable structures for supercapacitors[J]. J Inorg Mater, 2021, 36: 766-772.
[7] [7] AN C, ZHANG Y, GUO H, et al. Metal oxide-based supercapacitors: Progress and prospectives[J]. Nanoscale Adv, 2019, 1: 4644-4658.
[8] [8] BARIK R, INGOLE P P. Challenges and prospects of metal sulfide materials for supercapacitors[J]. Curr Opin Electrochem, 2020, 21: 327-334.
[9] [9] LIU X, ZANG W, GUAN C, et al. Ni-doped cobalt-cobalt nitride heterostructure arrays for high-power supercapacitors[J]. ACS Energy Lett, 2018, 3: 2462-2469.
[10] [10] WEI B, MING F, LIANG H, et al. All nitride asymmetric supercapacitors of niobium titanium nitride-vanadium nitride[J]. J Power Sources, 2021, 481: 228842.
[11] [11] YANG J, BAO W, JAUMAUX P, et al. MXene-based composites: Synthesis and applications in rechargeable batteries and supercapacitors[J]. Adv Mater Interfaces, 2019, 6: 1802004.
[12] [12] DAI F, WANG X, ZHENG S, et al. Toward high-performance and flexible all-solid-state micro-supercapacitors: MOF bulk vs. MOF nanosheets[J]. Chem Eng J, 2021, 413: 127520.
[13] [13] ZHENG Z, WU W, YANG T, et al. In situ reduced MXene/AuNPs composite toward enhanced charging/discharging and specific capacitance[J]. J Adv Ceram, 2022, 11: 742-753.
[14] [14] XU J, YANG N, HEUSER S, et al. Achieving ultrahigh energy densities of supercapacitors with porous titanium carbide/boron-doped diamond composite electrodes[J]. Adv Energy Mater, 2019, 9: 1803623.
[15] [15] HAN C, XU X, MU H, et al. Construction of hierarchical sea urchin-like manganese substituted nickel cobaltite@tricobalt tetraoxide core-shell microspheres on nickel foam as binder-free electrodes for high performance supercapacitors[J]. J Colloid Interface Sci, 2021, 596: 89-99.
[16] [16] CHENG Y, ZHANG Y, MENG C. Template fabrication of amorphous Co2SiO4 nanobelts/graphene oxide composites with enhanced electrochemical performances for hybrid supercapacitors[J]. ACS Appl Energy Mater, 2019, 2: 3830-3839.
[17] [17] HUSSAIN I, LAMIEL C, AHMAD M, et al. High entropy alloys as electrode material for supercapacitors: A review[J]. J Energy Storage, 2021, 44: 103405.
[18] [18] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6: 299-303.
[19] [19] CANTOR B, CHANG I, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater Sci Eng A, 2004, 375: 213?218.
[20] [20] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.
[21] [21] XIANG H, XING Y, DAI F, et al. High-entropy ceramics: Present status, challenges, and a look forward[J]. J Adv Ceram, 2021, 10: 385-441.
[22] [22] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat Rev Mater, 2020, 5: 295-309.
[23] [23] SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage[J]. Nat Commun, 2018, 9: 3400.
[24] [24] CHEN H, QIU N, WU B, et al. A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries[J]. RSC Adv, 2020, 10: 9736-9744.
[25] [25] B?RARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. J Mater Chem A, 2016, 4: 9536-9541.
[26] [26] LIU X, XING Y, XU K, et al. Kinetically accelerated lithium storage in high-entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies[J]. Small, 2022, 18: 2200524.
[27] [27] MA Y, MA Y, WANG Q, et al. High-entropy energy materials: Challenges and new opportunities[J]. Energy Environ Sci, 2021, 14: 2883-2905.
[28] [28] SARKAR A, DJENADIC R, USHARANI N J, et al. Nanocrystalline multicomponent entropy stabilised transition metaloxides[J]. J Eur Ceram Soc, 2017, 37: 747-754.
[29] [29] MA M, SUN Y, WU Y, et al. Nanocrystalline high-entropy carbide ceramics with improved mechanical properties[J]. J Am Ceram Soc, 2022, 105: 606-613.
[30] [30] ZHANG K, LI W, ZENG J, et al. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowders[J]. J Alloy Compd, 2020, 817: 153328.
[31] [31] MAO A, XIANG H-Z, ZHANG Z-G, et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder[J]. J Magn Magn Mater, 2019, 484: 245-252.
[32] [32] OKEJIRI F, ZHANG Z, LIU J, et al. Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method[J]. ChemSusChem, 2020, 13: 111-115.
[33] [33] YE F, JIANG X, HUANG X, et al. High sintering activity NaNbO3 powder synthesis via the polyacrylamide gel method and fabrication of a NaNbO3 ceramic at lower temperature[J]. J Mater Res Technol, 2021, 15: 5833-5840.
[34] [34] FU M, YANG J, LUO W, et al. Preparation of Gd2Zr2O7 nanopowders by polyacrylamide gel method and their sintering behaviors[J]. J Eur Ceram Soc, 2022, 42: 1585-1593.
[35] [35] MOOSAVIFARD S E, EL-KADY M F, RAHMANIFAR M S, et al. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors[J]. ACS Appl Mater Inter, 2015, 7: 4851-4860.
[36] [36] XU J, SUN Y, LU M, et al. Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors[J]. Acta Mater, 2018, 152: 162-174.
[37] [37] MNASRI W, B?RARDAN D, TUSSEAU-NENEZ S, et al. Synthesis of (MgCoNiCuZn)O entropy-stabilized oxides using solution-based routes: influence of composition on phase stability and functional properties[J]. J Mater Chem C, 2021, 9: 15121-15131.
[38] [38] PHAKATKAR A H, SARAY M T, RASUL M G, et al. Ultrafast synthesis of high entropy oxide nanoparticles by flame spray pyrolysis[J]. Langmuir, 2021, 37: 9059-9068.
[39] [39] QIU N, CHEN H, YANG Z, et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance[J]. J Alloy Compd, 2019, 777: 767-774.
[40] [40] LIN Y, BIESUZ M, BORTOLOTTI M, et al. Impact of reducing conditions on the stabilization of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high- entropy oxide[J]. Ceram Int, 2022, 48: 30184-30190.
[41] [41] NGUYEN T X, PATRA J, CHANG J-K, et al. High entropy spinel oxide nanoparticles for superior lithiation-delithiation performance[J]. J Mater Chem A, 2020, 8: 18963-18973.
[42] [42] TALLURI B, APARNA M L, SREENIVASULU N, et al. High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high- performance supercapacitor electrode material[J]. J Energy Storage, 2021, 42: 103004.
[43] [43] TAN H, ZHAO Z, ZHU W, et al. Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3[J]. ACS Appl Mater Inter, 2014, 6: 19184-19190.
[44] [44] SILVA T R, SILVA V D, FERREIRA L S, et al. Role of oxygen vacancies on the energy storage performance of battery-type NiO electrodes[J]. Ceram Int, 2020, 46: 9233-9239.
[45] [45] LIANG B, AI Y, WANG Y, et al. Spinel-type (FeCoCrMnZn)3O4 high-entropy oxide: Facile preparation and supercapacitor performance[J]. Materials, 2020, 13: 5798.
[46] [46] YANG H, GUO H, LI X, et al. Regulation effects of Co2+ on the construction of a Cu-Ni(OH)2@CoO nanoflower cluster heterojunction: a critical factor in obtaining a high-performance battery-type hybrid supercapacitor[J]. Nanoscale, 2021, 13: 18182-18191.
[47] [47] YU F, ZHANG C, WANG F, et al. A zinc bromine “supercapattery” system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage[J]. Mater Horiz, 2020, 7: 495-503.
[48] [48] XU H, CAO Y, LI Y, et al. High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance[J]. J Energy Chem, 2020, 50: 240-247.
[49] [49] AOKI K J, CHEN J, LIU Y, et al. Peak potential shift of fast cyclic voltammograms owing to capacitance of redox reactions[J]. J Electroanal Chem, 2020, 856: 113609.
[50] [50] LIU G, SONG X-Z, ZHANG S, et al. Hierarchical CuO@ZnCo-OH core?shell heterostructure on copper foam as three-dimensional binder-free electrodes for high performance asymmetric supercapacitors[J]. J Power Sources, 2020, 465: 228239.
Get Citation
Copy Citation Text
JI Pengchao, YANG Jingxin, TAN Lin, SUN Fu, SU Xinghua. Facile Synthesis of High-Entropy (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O Nanopowder and[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 124
Category:
Received: Aug. 13, 2022
Accepted: --
Published Online: Mar. 10, 2023
The Author Email: Pengchao JI (1262997590@qq.com)