Matter and Radiation at Extremes, Volume. 6, Issue 2, 026902(2021)
Thermal transport by electrons and ions in warm dense aluminum: A combined density functional theory and deep potential study
[1] T. Guillot. Interiors of giant planets inside and outside the solar system. Science, 286, 72-77(1999).
[2] A. Becker, B. Holst, N. Nettelmann et al. Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2). Astrophys. J., 750, 52(2012).
[3] M. P. Savedoff, H. M. Van Horn, F. Wesemael et al. Atmospheres for hot, high-gravity stars. I-Pure hydrogen models. Astrophys. J., Suppl. Ser., 43, 159(1980).
[4] J. Daligault, S. Gupta. Electron-ion scattering in dense multi-component plasmas: Application to the outer crust of an accreting neutron star. Astrophys. J., 703, 994-1011(2009).
[5] D. Hausermann, R. LeToullec, P. Loubeyre et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature, 383, 702-704(1996).
[6] A. C. Mitchell, W. J. Nellis, S. T. Weir. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett., 76, 1860-1863(1996).
[7] W. J. Nellis. Dynamic compression of materials: Metallization of fluid hydrogen at high pressures. Rep. Prog. Phys., 69, 1479-1580(2006).
[8] R. Cauble, L. B. Da Silva, T. S. Perry et al. Absolute measurements of the equations of state of low-Z materials in the multi-Mbar regime using laser-driven shocks. Phys. Plasmas, 4, 1857-1861(1997).
[9] J. Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).
[10] P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136, B864(1964).
[11] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133(1965).
[12] E. A. Carter, Y. A. Wang. Orbital-free kinetic-energy density functional theory. Theoretical Methods in Condensed Phase Chemistry, 117-184(2002).
[13] D. M. Ceperley, E. L. Pollock. Simulation of quantum many-body systems by path-integral methods. Phys. Rev. B, 30, 2555-2568(1984).
[14] D. M. Ceperley, E. L. Pollock. Path-integral computation of the low-temperature properties of liquid 4He. Phys. Rev. Lett., 56, 351-354(1986).
[15] E. W. Brown, B. K. Clark, J. L. DuBois et al. Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas. Phys. Rev. Lett., 110, 146405(2013).
[16] K. P. Driver, B. Militzer. Development of path integral Monte Carlo simulations with localized nodal surfaces for second-row elements. Phys. Rev. Lett., 115, 176403(2015).
[17] M. P. Desjarlais, B. Holst, R. Redmer. Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. Phys. Rev. B, 77, 184201(2008).
[18] J.-P. Crocombette, V. Recoules.
[19] C. Wang, P. Zhang. Wide range equation of state for fluid hydrogen from density functional theory. Phys. Plasmas, 20, 092703(2013).
[20] M. Bonitz, T. Dornheim, Z. A. Moldabekov et al.
[21] W. B. Hubbard. Thermal structure of Jupiter. Astrophys. J., 152, 745-754(1968).
[22] R. W. Siegfried, S. C. Solomon. Mercury: Internal structure and thermal evolution. Icarus, 23, 192-205(1974).
[23] S. Labrosse. Thermal and magnetic evolution of the Earth’s core. Phys. Earth Planet. Inter., 140, 127-143(2003).
[24] T. R. Dittrich, S. W. Haan, M. M. Marinak et al. A comparison of three-dimensional multimode hydrodynamic instability growth on various National Ignition Facility capsule designs with HYDRA simulations. Phys. Plasmas, 5, 1125-1132(1998).
[25] D. S. Ivanov, L. V. Zhigilei. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B, 68, 064114(2003).
[26] T. R. Boehly, L. A. Collins, S. X. Hu et al. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. Phys. Rev. E, 89, 043105(2014).
[27] R. Kubo. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn., 12, 570-586(1957).
[28] D. A. Greenwood. The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc., 71, 585-596(1958).
[29] L. A. Collins, M. P. Desjarlais, J. D. Kress. Electrical conductivity for warm, dense aluminum plasmas and liquids. Phys. Rev. E, 66, 025401(2002).
[30] D. V. Knyazev, P. R Levashov.
[31] D. V. Knyazev, P. R. Levashov. Transport and optical properties of warm dense aluminum in the two-temperature regime:
[32] A. Becker, M. Bethkenhagen, M. French, W. Lorenzen, N. Nettelmann, R. Redmer, J. Wicht.
[33] A. Decoster, F. Lambert, V. Recoules et al. On the transport coefficients of hydrogen in the inertial confinement fusion regime. Phys. Plasmas, 18, 056306(2011).
[34] N. de Koker, G. Steinle-Neumann, V. Vlček. Electrical and thermal conductivity of Al liquid at high pressures and temperatures from ab initio computations. Phys. Rev. B, 85, 184201(2012).
[35] J. Clérouin, V. Recoules, C. E. Starrett et al. Average atom transport properties for pure and mixed species in the hot and warm dense matter regimes. Phys. Plasmas, 19, 102709(2012).
[36] V. N. Goncharov, S. X. Hu, B. Militzer et al. Strong coupling and degeneracy effects in inertial confinement fusion implosions. Phys. Rev. Lett., 104, 235003(2010).
[37] S. Crockett, J. D. Kress, D. Sheppard et al. Combining Kohn-Sham and orbital-free density-functional theory for Hugoniot calculations to extreme pressures. Phys. Rev. E, 90, 063314(2014).
[38] D. Alfè, M. P. Desjarlais, M. Pozzo. Electrical and thermal conductivity of liquid sodium from first-principles calculations. Phys. Rev. B, 84, 054203(2011).
[39] M. S. Green. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys., 22, 398-413(1954).
[40] D. A. McQuarrie. Statistical Mechanics, 520-521(1976).
[41] K. Kakimoto, Y. Kangawa, T. Kawamura. Investigation of thermal conductivity of gan by molecular dynamics. J. Cryst. Growth, 284, 197-202(2005).
[42] H. Rezania, F. Taherkhani. Temperature and size dependency of thermal conductivity of aluminum nanocluster. J. Nanopart. Res., 14, 1222(2012).
[43] M. Kaviany, W. K. Kim, J. H. Shim. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models. J. Nucl. Mater., 491, 126-137(2017).
[44] C. Carbogno, R. Ramprasad, M. Scheffler.
[45] S. Baroni, A. Marcolongo, P. Umari. Microscopic theory and quantum simulation of atomic heat transport. Nat. Phys., 12, 80-84(2016).
[46] J. Kang, L.-W. Wang. First-principles Green-Kubo method for thermal conductivity calculations. Phys. Rev. B, 96, 020302(2017).
[47] M. French. Thermal conductivity of dissociating water—An ab initio study. New J. Phys., 21, 023007(2019).
[48] A. Jain, A. J. H. McGaughey. Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles. Phys. Rev. B, 93, 081206(2016).
[49] Y. Chen, W. Li, J. Ma. Understanding the thermal conductivity and Lorenz number in tungsten from first principles. Phys. Rev. B, 99, 020305(2019).
[50] J. Han, H. Wang, L. Zhang et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. Advances in Neural Information Processing Systems, 4436-4446(2018).
[51] J. Han, H. Wang, L. Zhang et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun., 228, 178-184(2018).
[52] J. Han, H. Wang, L. Zhang et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett., 120, 143001(2018).
[53] R. Car, M. Chen, W. E, W. Jia, L. Lin, D. Lu, H. Wang, L. Zhang. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning(2020).
[54] R. Car, M. Chen, W. E, W. Jia, L. Lin, D. Lu, H. Wang, L. Zhang. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy. Comput. Phys. Commun., 259, 107624(2021).
[55] L. Bonati, M. Parrinello. Silicon liquid structure and crystal nucleation from
[56] F.-Z. Dai, Y. Sun, B. Wen et al. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential. J. Mater. Sci. Technol., 43, 168-174(2020).
[57] H.-Y. Ko, B. Santra, L. Zhang et al. Isotope effects in liquid water via deep potential molecular dynamics. Mol. Phys., 117, 3269-3281(2019).
[58] M. Chen, B. Santra, X. Wu, J. Xu, C. Zhang, L. Zhang. Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the scan functional. Phys. Rev. B, 102, 214113(2020).
[59] M. Chen, Q. Liu, D. Lu. Structure and dynamics of warm dense aluminum: A molecular dynamics study with density functional theory and deep potential. J. Phys.: Condens. Matter, 32, 144002(2020).
[60] C. Gao, Q. Liu, Y. Zhang et al. Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics. Phys. Plasmas, 27, 122704(2020).
[61] L. H. Thomas. The calculation of atomic fields. Math. Proc. Cambridge Philos. Soc., 23, 542-548(1927).
[62] E. Fermi. Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend. Accad. Naz. Lincei, 6, 32(1927).
[63] E. Fermi. Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente. Z. Phys., 48, 73-79(1928).
[64] C. v. Weizsäcker. Zur theorie der kernmassen. Z. Phys. A: Hadrons Nucl., 96, 431-458(1935).
[65] M. P. Teter, L.-W. Wang. Kinetic-energy functional of the electron density. Phys. Rev. B, 45, 013196(1992).
[66] N. D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137, A1441(1965).
[67] O. Andreussi, T. Brumme, P. Giannozzi et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys.: Condens. Matter, 29, 465901(2017).
[68] K. Burke, M. Ernzerhof, J. P. Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865(1996).
[69] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50, 017953(1994).
[70] N. A. W. Holzwarth, G. E. Matthews, A. R. Tackett. A projector augmented wave (PAW) code for electronic structure calculations, Part I: Atompaw for generating atom-centered functions. Comput. Phys. Commun., 135, 329-347(2001).
[71] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72, 2384-2393(1980).
[72] M. Chen, C. Huang, J. Xia et al. Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations. Comput. Phys. Commun., 190, 228-230(2015).
[73] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511-519(1984).
[74] W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31, 1695-1697(1985).
[75] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 117, 1-19(1995).
[76] M. French, B. Holst, R. Redmer. Electronic transport coefficients from
[77] R. J. Needs, A. J. Read. Calculation of optical matrix elements with nonlocal pseudopotentials. Phys. Rev. B, 44, 13071-13073(1991).
[78] J. Hugel, F. Knider, A. V. Postnikov.
[79] M. French, R. Redmer. Electronic transport in partially ionized water plasmas. Phys. Plasmas, 24, 092306(2017).
[80] D. R. Hamann. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B, 88, 085117(2013).
[81] D. R. Hamann. Erratum: Optimized norm-conserving Vanderbilt pseudopotentials [Phys. Rev. B 88, 085117 (2013)]. Phys. Rev. B, 95, 239906(2017).
[82] A. Dal Corso. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci., 95, 337-350(2014).
[83] J. L. Martins, N. Troullier. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 43, 1993-2006(1991).
[84] H. Babaei, P. Boone, C. E. Wilmer. Heat flux for many-body interactions: Corrections to lammps. J. Chem. Theory Comput., 15, 5579-5587(2019).
[85] E. A. Carter, C. Huang. Transferable local pseudopotentials for magnesium, aluminum and silicon. Phys. Chem. Chem. Phys., 10, 7109-7120(2008).
[86] C. Gao, Y. Hou, D. Kang, C. Meng, J. Yuan, J. Zeng, S. Zhang. Thermally driven fermi glass states in warm dense matter: Effects on terahertz and direct-current conductivities. Phys. Plasmas, 26, 092701(2019).
[87] M. French, P. Sperling, B. B. L. Witte et al. Observations of non-linear plasmon damping in dense plasmas. Phys. Plasmas, 25, 056901(2018).
[88] G. E. Kemp, A. McKelvey, P. A. Sterne et al. Thermal conductivity measurements of proton-heated warm dense aluminum. Sci. Rep., 7, 7015(2017).
Get Citation
Copy Citation Text
Qianrui Liu, Junyi Li, Mohan Chen. Thermal transport by electrons and ions in warm dense aluminum: A combined density functional theory and deep potential study[J]. Matter and Radiation at Extremes, 2021, 6(2): 026902
Category: Radiation and Hydrodynamics
Received: Sep. 26, 2020
Accepted: Jan. 21, 2021
Published Online: Apr. 22, 2021
The Author Email: Chen Mohan (mohanchen@pku.edu.cn)