Optics and Precision Engineering, Volume. 28, Issue 8, 1634(2020)
Response characteristics of fiber Bragg gratings embedded in soft materials with different Young′s modulus for bending measurement
[1] [1] RYU S C, DUPONT P E. FBG-based shape sensing tubes for continuum robots[C]. 2014 IEEE International Conference on Robotics and Automation (ICRA), 31 May-7 June 2014, Hong Kong, China. IEEE, 2014: 3531-3537.
RYU S C, DUPONT P E. FBG-based shape sensing tubes for continuum robots[C]. 2014 IEEE International Conference on Robotics and Automation (ICRA), 31 May-7 June 2014, Hong Kong, China. IEEE, 2014: 3531-3537.
[2] [2] XU R, YURKEWICH A, PATEL R V. Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 1052-1059.
XU R, YURKEWICH A, PATEL R V. Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 1052-1059.
[3] [3] WANG H SH, ZHANG R X, CHEN W D, et al.. Shape detection algorithm for soft manipulator based on fiber Bragg gratings[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2977-2982.
WANG H SH, ZHANG R X, CHEN W D, et al.. Shape detection algorithm for soft manipulator based on fiber Bragg gratings[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2977-2982.
[4] [4] ZHANG R M, LIU H, HAN J D. Robust tracking of dexterous continuum robots: Fusing FBG shape sensing and stereo vision[C]. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 11-15 July 2017, Seogwipo, South Korea. IEEE, 2017: 925-928.
ZHANG R M, LIU H, HAN J D. Robust tracking of dexterous continuum robots: Fusing FBG shape sensing and stereo vision[C]. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 11-15 July 2017, Seogwipo, South Korea. IEEE, 2017: 925-928.
[5] [5] NGUYEN T D, HAN H S, SHIN H Y, et al.. Highly sensitive flexible proximity tactile array sensor by using carbon micro coils[J]. Sensors and Actuators A: Physical, 2017, 266: 166-177.
NGUYEN T D, HAN H S, SHIN H Y, et al.. Highly sensitive flexible proximity tactile array sensor by using carbon micro coils[J]. Sensors and Actuators A: Physical, 2017, 266: 166-177.
[6] [6] SONG S, LI Z, YU H Y, et al.. Electromagnetic positioning for tip tracking and shape sensing of flexible robots[J]. IEEE Sensors Journal, 2015, 15(8): 4565-4575.
SONG S, LI Z, YU H Y, et al.. Electromagnetic positioning for tip tracking and shape sensing of flexible robots[J]. IEEE Sensors Journal, 2015, 15(8): 4565-4575.
[7] [7] GUO Y X, KONG J Y, LIU H H, et al.. A three-axis force fingertip sensor based on fiber Bragg grating[J]. Sensors and Actuators A: Physical, 2016, 249: 141-148.
GUO Y X, KONG J Y, LIU H H, et al.. A three-axis force fingertip sensor based on fiber Bragg grating[J]. Sensors and Actuators A: Physical, 2016, 249: 141-148.
[8] [8] GUO Y X, KONG J Y, LIU H H, et al.. Design and investigation of a reusable surface-mounted optical fiber Bragg grating strain sensor[J]. IEEE Sensors Journal, 2016, 16(23): 8456-8462.
GUO Y X, KONG J Y, LIU H H, et al.. Design and investigation of a reusable surface-mounted optical fiber Bragg grating strain sensor[J]. IEEE Sensors Journal, 2016, 16(23): 8456-8462.
[9] [9] LIU H, FARVARDIN A, PEDRAM S A, et al.. Large deflection shape sensing of a continuum manipulator for minimally-invasive surgery[C]. 2015 IEEE International Conference on Robotics and Automation (ICRA), 26-30 May 2015, Seattle, WA, USA. IEEE, 2015: 201-206.
LIU H, FARVARDIN A, PEDRAM S A, et al.. Large deflection shape sensing of a continuum manipulator for minimally-invasive surgery[C]. 2015 IEEE International Conference on Robotics and Automation (ICRA), 26-30 May 2015, Seattle, WA, USA. IEEE, 2015: 201-206.
[10] [10] SHI C Y, LUO X B, QI P, et al.. Shape sensing techniques for continuum robots in minimally invasive surgery: a survey[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(8): 1665-1678.
SHI C Y, LUO X B, QI P, et al.. Shape sensing techniques for continuum robots in minimally invasive surgery: a survey[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(8): 1665-1678.
[11] [11] LIU H, FARVARDIN A, GRUPP R, et al.. Shape tracking of a dexterous continuum manipulator utilizing two large deflection shape sensors[J]. IEEE Sensors Journal, 2015, 15(10): 5494-5503.
LIU H, FARVARDIN A, GRUPP R, et al.. Shape tracking of a dexterous continuum manipulator utilizing two large deflection shape sensors[J]. IEEE Sensors Journal, 2015, 15(10): 5494-5503.
[12] [12] GE J, JAMES A E, XU L, et al.. Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2237-2240.
GE J, JAMES A E, XU L, et al.. Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2237-2240.
[13] [13] XU L, GE J, PATEL J H, et al.. Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing[J]. Optics Express, 2017, 25(20): 24727-24734.
XU L, GE J, PATEL J H, et al.. Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing[J]. Optics Express, 2017, 25(20): 24727-24734.
[14] [14] ZHANG X X, SONG Y M, MENG F Y, et al.. Optical fiber based soft curvature sensor with polyvinyl chloride reinforced silicone rubber substrate[J]. Optik, 2019, 178: 567-574.
ZHANG X X, SONG Y M, MENG F Y, et al.. Optical fiber based soft curvature sensor with polyvinyl chloride reinforced silicone rubber substrate[J]. Optik, 2019, 178: 567-574.
[16] [16] ZHANG R X, WANG H SH, CHEN W D. Shape control for a soft robot inspired by octopus[J]. Robot, 2016, 38(6): 754-759.(in Chinese)
ZHANG R X, WANG H SH, CHEN W D. Shape control for a soft robot inspired by octopus[J]. Robot, 2016, 38(6): 754-759.(in Chinese)
[18] [18] HE Y L, ZHU L Q, SUN G K, et al.. Design, measurement and shape reconstruction of soft surgical actuator based on fiber Bragg gratings[J]. Applied Sciences, 2018, 8(10): 1773.
HE Y L, ZHU L Q, SUN G K, et al.. Design, measurement and shape reconstruction of soft surgical actuator based on fiber Bragg gratings[J]. Applied Sciences, 2018, 8(10): 1773.
[19] [19] HE Y L, DONG M L, SUN G K, et al.. Shape monitoring of morphing wing using micro optical sensors with different embedded depth[J]. Optical Fiber Technology, 2019, 48: 179-185.
HE Y L, DONG M L, SUN G K, et al.. Shape monitoring of morphing wing using micro optical sensors with different embedded depth[J]. Optical Fiber Technology, 2019, 48: 179-185.
[20] [20] XIONG L, JIANG G Z, GUO Y X, et al.. A three-dimensional fiber Bragg grating force sensor for robot[J]. IEEE Sensors Journal, 2018, 18(9): 3632-3639.
XIONG L, JIANG G Z, GUO Y X, et al.. A three-dimensional fiber Bragg grating force sensor for robot[J]. IEEE Sensors Journal, 2018, 18(9): 3632-3639.
[21] [21] WANG X F, GUO Y X, XIONG L, et al.. High-frequency optical fiber Bragg grating accelerometer[J]. IEEE Sensors Journal, 2018, 18(12): 4954-4960.
WANG X F, GUO Y X, XIONG L, et al.. High-frequency optical fiber Bragg grating accelerometer[J]. IEEE Sensors Journal, 2018, 18(12): 4954-4960.
[22] [22] YU T. Research on Force Properties and Adhesive of PDMS in Flexible Electronis[D]. Yangzhou: Yangzhou University, 2017.(in Chinese)
YU T. Research on Force Properties and Adhesive of PDMS in Flexible Electronis[D]. Yangzhou: Yangzhou University, 2017.(in Chinese)
Get Citation
Copy Citation Text
GUO Yong-xing, YANG Yue-hui, XIONG Li, WU Heng, CHEN Min. Response characteristics of fiber Bragg gratings embedded in soft materials with different Young′s modulus for bending measurement[J]. Optics and Precision Engineering, 2020, 28(8): 1634
Category:
Received: Nov. 22, 2019
Accepted: --
Published Online: Nov. 2, 2020
The Author Email: Yong-xing GUO (yongxing_guo@wust.edu.cn)