International Journal of Extreme Manufacturing, Volume. 5, Issue 1, 12004(2023)
Two/Quasi-two-dimensional perovskite-based heterostructures: construction, properties and applications
[1] [1] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 2D materials and van der Waals heterostructures Science 353 aac9439
[2] [2] Chen Z Z, Guo Y W, Wertz E and Shi J 2019 Merits and challenges of ruddlesden-popper soft halide perovskites in electro-optics and optoelectronics Adv. Mater. 31 1803514
[3] [3] Chen S and Shi G Q 2017 Two-dimensional materials for halide perovskite-based optoelectronic devices Adv. Mater. 29 1605448
[4] [4] ZhouX,HuXZ,Yu J,LiuSY, ShuZW, ZhangQ,LiHQ, Ma Y, Xu H and Zhai T Y 2018 2D layered material-based van der Waals heterostructures for optoelectronics Adv. Funct. Mater. 28 1706587
[5] [5] Shi E Z, Gao Y, Finkenauer B P, Akriti C A H and Dou L T 2018 Two-dimensional halide perovskite nanomaterials and heterostructures Chem. Soc. Rev. 47 6046–72
[6] [6] Wang H, Liu F C, Fu W, Fang Z Y, Zhou W and Liu Z 2014 Two-dimensional heterostructures: fabrication, characterization, and application Nanoscale 6 12250–72
[7] [7] JinCH,MaEY, KarniO,Regan EC,WangFandHeinzTF 2018 Ultrafast dynamics in van der Waals heterostructures Nat. Nanotechnol. 13 994–1003
[8] [8] Shree S, Paradisanos I, Marie X, Robert C and Urbaszek B 2021 Guide to optical spectroscopy of layered semiconductors Nat. Rev. Phys. 3 39–54
[9] [9] Fang C, Wang H Z and Li D H 2021 Recent progress in two-dimensional ruddlesden–popper perovskite based heterostructures 2D Mater. 8 022006
[10] [10] Das S, Pandey D, Thomas J and Roy T 2019 The role of graphene and other 2D materials in solar photovoltaics Adv. Mater. 31 1802722
[11] [11] Grancini G and Nazeeruddin M K 2019 Dimensional tailoring of hybrid perovskites for photovoltaics Nat. Rev. Mater. 4 4–22
[12] [12] HeTW et al 2020 Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape Nat. Commun. 11 1672
[13] [13] Wang J Y, Verzhbitskiy I and Eda G 2018 Electroluminescent devices based on 2D semiconducting transition metal dichalcogenides Adv. Mater. 30 1802687
[14] [14] Ross J S et al 2017 Interlayer exciton optoelectronics in a 2D heterostructure p-n junction Nano Lett. 17 638–43
[15] [15] MeiF, SunDW, MeiSJ,FengJH,ZhouYM,XuJXand Xiao X H 2019 Recent progress in perovskite-based photodetectors: the design of materials and structures Adv. Phys. X 4 1592709
[16] [16] Fl.ry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, Leuthold J and Novotny L 2020 Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity Nat. Nanotechnol. 15 118–24
[17] [17] Zhang L H, Zhang X and Lu G 2020 Band alignment in two-dimensional halide perovskite heterostructures: type I or type II? J. Phys. Chem. Lett. 11 2910–6
[18] [18] Xu Z Q, Mendelson N, Scott J A, Li C, Abidi I H, Liu H W, Luo Z T, Aharonovich I and Toth M 2020 Charge and energy transfer of quantum emitters in 2D heterostructures 2D Mater. 7 031001
[19] [19] Bradac C, Xu Z Q and Aharonovich I 2021 Quantum energy and charge transfer at two-dimensional interfaces Nano Lett. 21 1193–204
[20] [20] Froehlicher G, Lorchat E and Berciaud S 2018 Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures Phys. Rev. X 8 011007
[21] [21] LiuX,PeiJJ,HuZH,ZhaoWJ,LiuS,AmaraMR, Watanabe K, Taniguchi T, Zhang H and Xiong Q H 2020 Manipulating charge and energy transfer between 2D atomic layers via heterostructure engineering Nano Lett. 20 5359–66
[22] [22] Rivera P, Yu H Y, Seyler K L, Wilson N P, Yao W and Xu X D 2018 Interlayer valley excitons in heterobilayers of transition metal dichalcogenides Nat. Nanotechnol. 13 1004–15
[23] [23] Jiang Y, Chen S L, Zheng W H, Zheng B Y and Pan A L 2021 Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures Light Sci. Appl. 10 72
[24] [24] Alferov Z I, Andreev V M, Garbuzov D Z, Zhilyaev Y V, Morozov E P, Portnoi E L and Trofim V G 1971 Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature Sov. Phys. Semicond. 4 1573–5
[25] [25] Chang C et al 2021 Recent progress on two-dimensional materials Acta Phys. Chim. Sin. 37 2108017
[26] [26] Randviir E P, Brownson D A C and Banks C E 2014 A decade of graphene research: production, applications and outlook Mater. Today 17 426–32
[27] [27] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Two-dimensional atomic crystals Proc. Natl Acad. Sci. USA 102 10451–3
[28] [28] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 2D transition metal dichalcogenides Nat. Rev. Mater. 2 17033
[29] [29] LiLK,Yu YJ,Ye GJ,GeQQ,OuXD,Wu H,FengDL, Chen X H and Zhang Y B 2014 Black phosphorus field-effect transistors Nat. Nanotechnol. 9 372–7
[30] [30] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
[31] [31] Mouri S, Miyauchi Y and Matsuda K 2013 Tunable photoluminescence of monolayer MoS2 via chemical doping Nano Lett. 13 5944–8
[32] [32] Ju L et al 2014 Photoinduced doping in heterostructures of graphene and boron nitride Nat. Nanotechnol. 9 348–52
[33] [33] LiZW et al 2020 Efficient strain modulation of 2D materials via polymer encapsulation Nat. Commun. 11 1151
[34] [34] Neumann C et al 2015 Raman spectroscopy as probe of nanometre-scale strain variations in graphene Nat. Commun. 6 8429
[35] [35] BaiYS et al 2020 Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions Nat. Mater. 19 1068–73
[36] [36] Edelberg D, Kumar H, Shenoy V, Ochoa H and Pasupathy A N 2020 Tunable strain soliton networks confine electrons in van der Waals materials Nat. Phys. 16 1097–102
[37] [37] Ross J S et al 2013 Electrical control of neutral and charged excitons in a monolayer semiconductor Nat. Commun. 4 1474
[38] [38] Baugher B W H, Churchill H O H, Yang Y F and Jarillo-Herrero P 2014 Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide Nat. Nanotechnol. 9 262–7
[39] [39] Peimyoo N et al 2021 Electrical tuning of optically active interlayer excitons in bilayer MoS2 Nat. Nanotechnol. 16 888–93
[40] [40] Ross J S et al 2014 Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions Nat. Nanotechnol. 9 268–72
[41] [41] Zhang Y J, Oka T, Suzuki R, Ye J T and Iwasa Y 2014 Electrically switchable chiral light-emitting transistor Science 344 725–8
[42] [42] Zhao C et al 2017 Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field Nat. Nanotechnol. 12 757–62
[43] [43] Aivazian G, Gong Z R, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C W, Cobden D, Yao W and Xu X 2015 Magnetic control of valley pseudospin in monolayer WSe2 Nat. Phys. 11 148–52
[44] [44] KimJ,HongXP, JinCH,ShiSF, ChangCYS,ChiuMH, Li L J and Wang F 2014 Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers Science 346 1205–8
[45] [45] Wang H Z, Fang C, Luo H M and Li D H 2019 Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites J. Semicond. 40 041901
[46] [46] Mao L L, Stoumpos C C and Kanatzidis M G 2019 Two-dimensional hybrid halide perovskites: principles and promises J. Am. Chem. Soc. 141 1171–90
[47] [47] Leng K, Fu W, Liu Y P, Chhowalla M and Loh K P 2020 From bulk to molecularly thin hybrid perovskites Nat. Rev. Mater. 5 482–500
[48] [48] QiX,ZhangYP, OuQD,HaST, QiuCW, ZhangH, Cheng Y B, Xiong Q H and Bao Q L 2018 Photonics and optoelectronics of 2D metal-halide perovskites Small 14 1800682
[49] [49] Passarelli J V et al 2020 Tunable exciton binding energy in 2D hybrid layered perovskites through donor-acceptor interactions within the organic layer Nat. Chem. 12 672–82
[50] [50] Chen Y N, Sun Y, Peng J J, Tang J H, Zheng K B and Liang Z Q 2018 2D ruddlesden-popper perovskites for optoelectronics Adv. Mater. 30 1703487
[51] [51] Zhang C, Li Y, Ma C L and Zhang Q C 2022 Recent progress of organic–inorganic hybrid perovskites in RRAM, artificial synapse, and logic operation Small Sci. 2 2100086
[52] [52] Min H et al 2021 Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes Nature 598 444–50
[53] [53] Blancon J et al 2018 Scaling law for excitons in 2D perovskite quantum wells Nat. Commun. 9 2254
[54] [54] Era M, Maeda K and Tsutsui T 1998 Self-organization approach to organic/inorganic quantum-well based on metal halide-based layer perovskite Thin Solid Films 331 285–90
[55] [55] GanZX,ChengYC,ChenWJ,LohKP, JiaBHand Wen X M 2021 Photophysics of 2D organic–inorganic hybrid lead halide perovskites: progress, debates, and challenges Adv. Sci. 8 2001843
[56] [56] Gauthron K et al 2010 Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite Opt. Express 18 5912–9
[57] [57] Ishihara T, Takahashi J and Goto T 1990 Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)PbI4 Phys. Rev. B 42 11099–107
[58] [58] Zhao X M, Liu T R and Loo Y L 2022 Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities Adv. Mater. 34 2105849
[59] [59] Gao Y et al 2019 Molecular engineering of organic-inorganic hybrid perovskites quantum wells Nat. Chem. 11 1151–7
[60] [60] Traore B et al 2018 Composite nature of layered hybrid perovskites: assessment on quantum and dielectric confinements and band alignment ACS Nano 12 3321–32
[61] [61] Cheng X H, Han Y and Cui B B 2022 Fabrication strategies and optoelectronic applications of perovskite heterostructures Adv. Opt. Mater. 10 2102224
[62] [62] Wang H Z, Ma J Q and Li D H 2021 Two-dimensional hybrid perovskite-based van der Waals heterostructures J. Phys. Chem. Lett. 12 8178–87
[63] [63] Aubrey M L, Saldivar Valdes A, Filip M R, Connor B A, Lindquist K P, Neaton J B and Karunadasa H I 2021 Directed assembly of layered perovskite heterostructures as single crystals Nature 597 355–9
[64] [64] Zhang J R, Song X F, Wang L and Huang W 2022 Ultrathin two-dimensional hybrid perovskites toward flexible electronics and optoelectronics Natl Sci. Rev. 9 nwab129
[65] [65] Sirbu D, Balogun F H, Milot R L and Docampo P 2021 Layered perovskites in solar cells: structure, optoelectronic properties, and device design Adv. Energy Mater. 11 2003877
[66] [66] Saparov B and Mitzi D B 2016 Organic-inorganic perovskites: structural versatility for functional materials design Chem. Rev. 116 4558–96
[67] [67] Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T and Kanatzidis M G 2016 Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors Chem. Mater. 28 2852–67
[68] [68] Mao L L, Ke W J, Pedesseau L, Wu Y L, Katan C, Even J, Wasielewski M R, Stoumpos C C and Kanatzidis M G 2018 Hybrid Dion-Jacobson 2D lead iodide perovskites J. Am. Chem. Soc. 140 3775–83
[69] [69] LiXT et al 2019 Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations J. Am. Chem. Soc. 141 12880–90
[70] [70] Guo W, Yang Z, Dang J L and Wang M Q 2021 Progress and perspective in Dion-Jacobson phase 2D layered perovskite optoelectronic applications Nano Energy 86 106129
[71] [71] Straus D B and Kagan C R 2018 Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties J. Phys. Chem. Lett. 9 1434–47
[72] [72] Cao D H, Stoumpos C C, Farha O K, Hupp J T and Kanatzidis M G 2015 2D homologous perovskites as light-absorbing materials for solar cell applications J. Am. Chem. Soc. 137 7843–50
[73] [73] Sheng X, Li Y H, Xia M and Shi E Z 2022 Quasi-2D halide perovskite crystals and their optoelectronic applications J. Mater. Chem. A 10 19169–83
[74] [74] KimH,HuynhKA,KimSY, LeQVandJangHW2020 2D and quasi-2D halide perovskites: applications and progress Phys. Status Solidi 14 1900435
[75] [75] Yuan M J et al 2016 Perovskite energy funnels for efficient light-emitting diodes Nat. Nanotechnol. 11 872–7
[76] [76] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Emerging photoluminescence in monolayer MoS2 Nano Lett. 10 1271–5
[77] [77] DouLT et al 2015 Atomically thin two-dimensional organic-inorganic hybrid perovskites Science 349 1518–21
[78] [78] Yu JC et al 2019 Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites Adv. Mater. 31 1806385
[79] [79] ShenHZ,LiJZ,WangHZ,MaJQ,WangJ,LuoHMand Li D H 2019 Two-dimensional lead-free perovskite (C6H5C2H4NH3)2CsSn2I7 with high hole mobility J. Phys. Chem. Lett. 10 7–12
[80] [80] Blancon J et al 2017 Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites Science 355 1288–92
[81] [81] Saouma F O, Stoumpos C C, Wong J, Kanatzidis M G and Jang J I 2017 Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites Nat. Commun. 8 742
[82] [82] LiuWW, XingJ,ZhaoJX,Wen XL,WangK,LuPXand Xiong Q H 2017 Giant two-photon absorption and its saturation in 2D organic–inorganic perovskite Adv. Opt. Mater. 5 1601045
[83] [83] Wang J et al 2019 Giant nonlinear optical response in 2D perovskite heterostructures Adv. Opt. Mater. 7 1900398
[84] [84] LiWC,MaJQ,WangHZ,FangC,LuoHMandLiDH 2020 Biexcitons in 2D (iso-BA)2PbI4 perovskite crystals Nanophotonics 9 2001–6
[85] [85] McCall K M, Stoumpos C C, Kostina S S, Kanatzidis M G and Wessels B W 2017 Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) Chem. Mater. 29 4129–45
[86] [86] Li J Z, Wang H Z and Li D H 2020 Self-trapped excitons in two-dimensional perovskites Front. Optoelectron. 13 225–34
[87] [87] Wu X X, Trinh M T, Niesner D, Zhu H M, Norman Z, Owen J S, Yaffe O, Kudisch B J and Zhu X Y 2015 Trap states in lead iodide perovskites J. Am. Chem. Soc. 137 2089–96
[88] [88] Hu T et al 2016 Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites J. Phys. Chem. Lett. 7 2258–63
[89] [89] Thirumal K et al 2017 Morphology-independent stable white-light emission from self-assembled two-dimensional perovskites driven by strong exciton–phonon coupling to the organic framework Chem. Mater. 29 3947–53
[90] [90] Yangui A et al 2015 Optical investigation of broadband white-light emission in self-assembled organic–inorganic perovskite (C6H11NH3)2PbBr4 J. Phys. Chem. C 119 23638–47
[91] [91] DeCrescent R A, Du X H, Kennard R M, Venkatesan N R, Dahlman C J, Chabinyc M L and Schuller J A 2020 Even-parity self-trapped excitons lead to magnetic dipole radiation in two-dimensional lead halide perovskites ACS Nano 14 8958–68
[92] [92] LiJZ,WangJ,MaJQ,ShenHZ,LiL,DuanXFand Li D H 2019 Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals Nat. Commun. 10 806
[93] [93] WangHZ,LiL,MaJQ,LiJZandLiDH20212D perovskite narrowband photodetector arrays J. Mater. Chem. C 9 11085–90
[94] [94] LiJZ,MaJQ,ChengX,LiuZY, ChenYYandLiDH 2020 Anisotropy of excitons in two-dimensional perovskite crystals ACS Nano 14 2156–61
[95] [95] LiL,JinL,ZhouYX,LiJZ,MaJQ,WangS,LiWCand Li D H 2019 Filterless polarization-sensitive 2D perovskite narrowband photodetectors Adv. Opt. Mater. 7 1900988
[96] [96] Ma J Q, Fang C, Chen C, Jin L, Wang J Q, Wang S, Tang J and Li D H 2019 Chiral 2D perovskites with a high degree of circularly polarized photoluminescence ACS Nano 13 3659–65
[97] [97] MaJQ,FangC,LiangLH,WangHZandLiDH2021 Full-stokes polarimeter based on chiral perovskites with chirality and large optical anisotropy Small 17 2103855
[98] [98] Shi E Z and Dou L T 2020 Halide perovskite epitaxial heterostructures Acc. Mater. Res. 1 213–24
[99] [99] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, Van Der Zant H S J and Steele G A 2014 Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping 2D Mater. 1 011002
[100] [100] Pan D X, Fu Y P, Spitha N, Zhao Y Z, Roy C R, Morrow D J, Kohler D D, Wright J C and Jin S 2021 Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden-Popper halide perovskites Nat. Nanotechnol. 16 159–65
[101] [101] Akriti et al 2021 Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures Nat. Nanotechnol. 16 584–91
[102] [102] Fang C, Wang H Z, Shen Z X, Shen H Z, Wang S, Ma J Q, Wang J, Luo H M and Li D H 2019 High-performance photodetectors based on lead-free 2D ruddlesden-popper perovskite/MoS2 heterostructures ACS Appl. Mater. Interfaces 11 8419–27
[103] [103] Fu Y P, Zheng W H, Wang X X, Hautzinger M P, Pan D X, Dang L N, Wright J C, Pan A L and Jin S 2018 Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer J. Am. Chem. Soc. 140 15675–83
[104] [104] Wang J, Li J Z, Lan S G, Fang C, Shen H Z, Xiong Q H and Li D H 2019 Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors ACS Nano 13 5473–84
[105] [105] Wang H L et al 2020 Extremely low dark current MoS2 photodetector via 2D halide perovskite as the electron reservoir Adv. Opt. Mater. 8 1901402
[106] [106] Shi E Z, Yuan B, Shiring S B, Gao Y, Guo Y, Su C, Lai M, Yang P, Kong J and Savoie B M 2020 Two-dimensional halide perovskite lateral epitaxial heterostructures Nature 580 614–20
[107] [107] Ham A, Kim T S, Kang M, Cho H and Kang K 2021 Strategies for chemical vapor deposition of two-dimensional organic-inorganic halide perovskites iScience 24 103486
[108] [108] WangJ,LiJZ,Tan QH,LiL,ZhangJB,ZangJF, Tan PH, Zhang J and Li D H 2017 Controllable synthesis of two-dimensional Ruddlesden–Popper-type perovskite heterostructures J. Phys. Chem. Lett. 8 6211–9
[109] [109] Hwang B and Lee J S 2019 2D perovskite-based self-aligned lateral heterostructure photodetectors utilizing vapor deposition Adv. Opt. Mater. 7 1801356
[110] [110] Mandal T N and Jana A 2020 Lateral epitaxial heterostructures of halide perovskites for diode application Matter 3 617–9
[111] [111] Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F and Wang F 2014 Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures Nat. Nanotechnol. 9 682–6
[112] [112] Jonas D M, Lang M J, Nagasawa Y, Joo T and Fleming G R 1996 Pump.probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26 J. Phys. Chem. 100 12660–73
[113] [113] Yang T F et al 2019 Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures ACS Nano 13 7996–8003
[114] [114] Yang A et al 2019 Giant enhancement of photoluminescence emission in WS2-two-dimensional perovskite heterostructures Nano Lett. 19 4852–60
[115] [115] ChenYY, LiuZY, LiJZ,ChengX,MaJQ,WangHZ and Li D H 2020 Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures ACS Nano 14 10258–64
[116] [116] Yao WD,YangD,ChenYY, HuJC,LiJZandLiDH 2022 Layer-number engineered momentum-indirect interlayer excitons with large spectral tunability Nano Lett. 22 7230–7
[117] [117] ChenYY, MaJQ,LiuZY, LiJZ,DuanXPandLiDH 2020 Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures ACS Nano 14 15154–60
[118] [118] Zhang Q, Linardy E, Wang X Y and Eda G 2020 Excitonic energy transfer in heterostructures of quasi-2D perovskite and monolayer WS2 ACS Nano 14 11482–9
[119] [119] Li D, Li D, Yang A Q, Zhang H, Lai X X and Liang C J 2021 Electronic and optical properties of van der Waals heterostructures based on two-dimensional perovskite (PEA)2PbI4 and black phosphorus ACS Omega 6 20877–86
[120] [120] Liu B, Long M Q, Cai M Q and Yang J L 2018 Two-dimensional van der Waals heterostructures constructed via perovskite (C4H9NH3)2XBr4 and black phosphorus J. Phys. Chem. Lett. 9 4822–7
[121] [121] Zhan G X et al 2022 Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites Nano Lett. 22 3961–8
[122] [122] Franken P A, Hill A E, Peters C W and Weinreich G 1961 Generation of optical harmonics Phys. Rev. Lett. 7 118–9
[123] [123] Zhou Y X, Huang Y Y, Xu X L, Fan Z Y, Khurgin J B and Xiong Q H 2020 Nonlinear optical properties of halide perovskites and their applications Appl. Phys. Rev. 7 041313
[124] [124] Li G X, Zhang S and Zentgraf T 2017 Nonlinear photonic metasurfaces Nat. Rev. Mater. 2 17010
[125] [125] Chen Z H, Zhang Q, Zhu M L, Chen H, Wang X Y, Xiao S, Loh K P, Eda G, Meng J Q and He J 2021 In-plane anisotropic nonlinear optical properties of two-dimensional organic–inorganic hybrid perovskite J. Phys. Chem. Lett. 12 7010–8
[126] [126] HanX,ZhengYS,ChaiSQ,ChenSHandXuJL20202D organic-inorganic hybrid perovskite materials for nonlinear optics Nanophotonics 9 1787–810
[127] [127] Abbas M S, Hussain S, Zhang J Q, Wang B X, Yang C, Wang Z, Wei Z X and Ahmad R 2020 Orientationally engineered 2D/3D perovskite for high efficiency solar cells Sustain. Energy Fuels 4 324–30
[128] [128] WangZ,LuYL,XuZH,HuJL,ChenYJ,ZhangCL, Wang Y S, Guo F and Mai Y 2021 An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20% Adv. Sci. 8 2101856
[129] [129] GeCY, XueYZB,LiL,TangBandHuHL2020Recent progress in 2D/3D multidimensional metal halide perovskites solar cells Front. Mater. 7 601179
[130] [130] Wang Z P, Lin Q Q, Chmiel F P, Sakai N, Herz L M and Snaith H J 2017 Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites Nat. Energy 2 17135
[131] [131] LinJT, ChuTC,ChenDG,HuangZX,ChenHC,LiCS, Wu C I, Chou P T, Chiu C W and Chen H M 2021 Vertical 2D/3D heterojunction of tin perovskites for highly efficient HTM-free perovskite solar cell ACS Appl. Energy Mater. 4 2041–8
[132] [132] Wang Q X et al 2020 Optoelectronic properties of a van der Waals WS2 monolayer/2D perovskite vertical heterostructure ACS Appl. Mater. Interfaces 12 45235–42
[133] [133] Wang Q X and Wee A T S 2021 Upconversion photovoltaic effect of WS2/2D perovskite heterostructures by two-photon absorption ACS Nano 15 10437–43
[134] [134] Bae S H, Kum H, Kong W, Kim Y, Choi C, Lee B, Lin P, Park Y and Kim J 2019 Integration of bulk materials with two-dimensional materials for physical coupling and applications Nat. Mater. 18 550–60
[135] [135] Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y and Duan X F 2018 Approaching the schottky–mott limit in van der Waals metal–semiconductor junctions Nature 557 696–700
[136] [136] Yu WJ,LiuY, ZhouHL,YinAX,LiZ,HuangYand Duan X F 2013 Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials Nat. Nanotechnol. 8 952–8
[137] [137] Tan Z J et al 2016 Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector J. Am. Chem. Soc. 138 16612–5
[138] [138] Cao Y et al 2022 Enhanced photodetector performance of black phosphorus by interfacing with chiral perovskite Nano Res. 15 7492–7
[139] [139] Feng F, Wang T, Qiao J, Min C J, Yuan X C and Somekh M 2021 Plasmonic and graphene-functionalized high-performance broadband quasi-two-dimensional perovskite hybrid photodetectors ACS Appl. Mater. Interfaces 13 61496–505
[140] [140] ZhangXY, LiuXT, LiLN,JiCM,Yao YPandLuoJH 2021 Great amplification of circular polarization sensitivity via heterostructure engineering of a chiral two-dimensional hybrid perovskite crystal with a three-dimensional MAPbI3 crystal ACS Cent. Sci. 7 1261–8
[141] [141] HeYH,Pan WT, GuoCJ,ZhangHM,WeiHTand Yang B 2021 3D/2D perovskite single crystals heterojunction for suppressed ions migration in hard x-ray detection Adv. Funct. Mater. 31 2104880
[142] [142] Ahn J, Lee E, Tan J W, Yang W, Kim B and Moon J 2017 A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites Mater. Horiz. 4 851–6
[143] [143] Zhou H B, Lai H J, Sun X, Zhang N, Wang Y, Liu P Y, Zhou Y and Xie W G 2022 Van der Waals MoS2/two-dimensional perovskite heterostructure for sensitive and ultrafast sub-band-gap photodetection ACS Appl. Mater. Interfaces 14 3356–62
[144] [144] Wang N N et al 2016 Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells Nat. Photon. 10 699–704
[145] [145] Long G K et al 2018 Spin control in reduced-dimensional chiral perovskites Nat. Photon. 12 528–33
[146] [146] Zhao B D et al 2018 High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes Nat. Photon. 12 783–9
[147] [147] Heo S et al 2019 Dimensionally engineered perovskite heterostructure for photovoltaic and optoelectronic applications Adv. Energy Mater. 9 1902470
[148] [148] Zhang J, Zhu X X, Wang M S and Hu B 2020 Establishing charge-transfer excitons in 2D perovskite heterostructures Nat. Commun. 11 2618
[149] [149] Xie C, Liu C K, Loi H L and Yan F 2020 Perovskite-based phototransistors and hybrid photodetectors Adv. Funct. Mater. 30 1903907
[150] [150] Shao Y C et al 2017 Stable graphene-two-dimensional multiphase perovskite heterostructure phototransistors with high gain Nano Lett. 17 7330–8
[151] [151] FuQD et al 2019 Ultrathin ruddlesden-popper perovskite heterojunction for sensitive photodetection Small 15 1902890
[152] [152] Leng K et al 2020 Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface Nat. Commun. 11 5483
[153] [153] Zhao L F, Tian H, Silver S H, Kahn A, Ren T L and Rand B P 2018 Ultrasensitive heterojunctions of graphene and 2D perovskites reveal spontaneous iodide loss Joule 2 2133–44
[154] [154] JiangJY, ZouXM,LvYW, LiuY, XuWT, Tao QY, Chai Y and Liao L 2020 Rational design of Al2O3/2D perovskite heterostructure dielectric for high performance MoS2 phototransistors Nat. Commun. 11 4266
[155] [155] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Valleytronics in 2D materials Nat. Rev. Mater. 1 16055
[156] [156] Mak K F, He K L, Shan J and Heinz T F 2012 Control of valley polarization in monolayer MoS2 by optical helicity Nat. Nanotechnol. 7 494–8
[157] [157] Cao T et al 2012 Valley-selective circular dichroism of monolayer molybdenum disulphide Nat. Commun. 3 887
[158] [158] Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Valley polarization in MoS2 monolayers by optical pumping Nat. Nanotechnol. 7 490–3
[159] [159] Kioseoglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D and Jonker B T 2012 Valley polarization and intervalley scattering in monolayer MoS2 Appl. Phys. Lett. 101 221907
[160] [160] XiaoD,LiuGB,FengWX,XuXDandYao W2012 Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides Phys. Rev. Lett. 108 196802
[161] [161] Son J, Kim K H, Ahn Y H, Lee H W and Lee J 2019 Strain engineering of the berry curvature dipole and valley magnetization in monolayer MoS2 Phys. Rev. Lett. 123 036806
[162] [162] Norden T, Zhao C, Zhang P Y, Sabirianov R, Petrou A and Zeng H 2019 Giant valley splitting in monolayer WS2 by magnetic proximity effect Nat. Commun. 10 4163
[163] [163] Ye Y, Xiao J, Wang H L, Ye Z L, Zhu H Y, Zhao M, Wang Y, Zhao J H, Yin X B and Zhang X 2016 Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide Nat. Nanotechnol. 11 598–602
[164] [164] Lu H P, Wang J Y, Xiao C X, Pan X, Chen X H, Brunecky R, Berry J J, Zhu K, Beard M C and Vardeny Z V 2019 Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites Sci. Adv. 5 eaay0571
[165] [165] LuHP et al 2020 Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport J. Am. Chem. Soc. 142 13030–40
[166] [166] Lagarde D, Bouet L, Marie X, Zhu C R, Liu B L, Amand T, Tan P H and Urbaszek B 2014 Carrier and polarization dynamics in monolayer MoS2 Phys. Rev. Lett. 112 047401
[167] [167] Mai C, Barrette A, Yu Y F, Semenov Y G, Kim K W, Cao L Y and Gundogdu K 2014 Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2 Nano Lett. 14 202–6
[168] [168] Rivera P et al 2015 Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures Nat. Commun. 6 6242
[169] [169] Rivera P, Seyler K L, Yu H Y, Schaibley J R, Yan J Q, Mandrus D G, Yao W and Xu X D 2016 Valley-polarized exciton dynamics in a 2D semiconductor heterostructure Science 351 688–91
[170] [170] Nayak P K et al 2017 Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures ACS Nano 11 4041–50
[171] [171] WeiQL,Wen XL,HuJC,ChenYY, LiuZY, LinTHand Li D H 2022 Site-controlled interlayer coupling in WSe2/2D perovskite heterostructure Sci. China Mater. 65 1337–44
[172] [172] Tian H, Wang X F, Wu F, Yang Y and Ren T L 2018 High performance 2D perovskite/graphene optical synapses as artificial eyes Proc. 2018 IEEE Int. Electron Devices Meeting (San Francisco, CA: IEEE) pp 38.6.1–4
[173] [173] LiYT et al 2019 Light-enhanced ion migration in two-dimensional perovskite single crystals revealed in carbon nanotubes/two-dimensional perovskite heterostructure and its photomemory application ACS Cent. Sci. 5 1857–65
[174] [174] Ran C X, Xi J, Gao W Y, Yuan F, Lei T, Jiao B, Hou X and Wu Z W 2018 Bilateral interface engineering toward efficient 2D–3D bulk heterojunction tin halide lead-free perovskite solar cells ACS Energy Lett. 3 713–21
[175] [175] Gharibzadeh S et al 2019 Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure Adv. Energy Mater. 9 1803699
[176] [176] La-Placa M G, Gil-Escrig L, Guo D Y, Palazon F, Savenije T J, Sessolo M and Bolink H J 2019 Vacuum-deposited 2D/3D perovskite heterojunctions ACS Energy Lett. 4 2893–901
[177] [177] Lin Y, Bai Y, Fang Y J, Chen Z L, Yang S, Zheng X P, Tang S, Liu Y, Zhao J J and Huang J S 2018 Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures J. Phys. Chem. Lett. 9 654–8
[178] [178] LiPW, ZhangYQ,LiangC,XingGC,LiuXL,LiFY, Liu X T, Hu X T, Shao G S and Song Y L 2018 Phase pure 2D perovskite for high-performance 2D–3D heterostructured perovskite solar cells Adv. Mater. 30 1805323
[179] [179] Zhang T K et al 2018 Stable and efficient 3D-2D perovskite-perovskite planar heterojunction solar cell without organic hole transport layer Joule 2 2706–21
[180] [180] HuJL et al 2020 Spontaneously self-assembly of a 2D/3D heterostructure enhances the efficiency and stability in printed perovskite solar cells Adv. Energy Mater. 10 2000173
[181] [181] Grancini G et al 2017 One-year stable perovskite solar cells by 2D/3D interface engineering Nat. Commun. 8 15684
[182] [182] MaCY et al 2016 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells Nanoscale 8 18309–14
[183] [183] Hu Y H, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Müller-Buschbaum P and Docampo P 2016 Hybrid perovskite/perovskite heterojunction solar cells ACS Nano 10 5999–6007
[184] [184] ZhangXY, LiLN,JiCM,LiuXT, LiQ,ZhangK,PengY, Hong M C and Luo J H 2021 Rational design of high-quality 2D/3D perovskite heterostructure crystals for record-performance polarization-sensitive photodetection Natl Sci. Rev. 8 nwab044
[185] [185] LanZJ,LauYS,WangYW, XiaoZ,DingLM,LuoDand Zhu F R 2020 Filter-free band-selective organic photodetectors Adv. Opt. Mater. 8 2001388
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Two/Quasi-two-dimensional perovskite-based heterostructures: construction, properties and applications[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 12004
Category: Topical Review
Received: Oct. 19, 2022
Accepted: --
Published Online: Jul. 26, 2024
The Author Email: (dehuili@hust.edu.cn)