Chinese Physics B, Volume. 29, Issue 10, (2020)
Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation
[1] V G Dubrovskyt, B G Konopelcbenkof. J. Phys. A: Math. Gen., 27, 4619(1994).
[2] M Boitit, J J P Leon, M Manna, F Pempinellit. Inverse Probl., 3, 25(1987).
[3] C L Zheng. Commun. Theor. Phys., 40, 25(2003).
[4] D S Li, H Q Zhang. Chin. Phy., 13, 1377(2004).
[5] Z Y Ma. Chin. Phy., 16, 1848(2007).
[6] W H Huang. Chin. Phy. B, 18, 3163(2009).
[7] X Y Wen, X G Xu. Appl. Math. Comput., 219, 7730(2013).
[8] B Ren, W X Ma, J Yu. Comput. Math. Appl., 77, 2086(2019).
[9] J B Li, Z R Liu. Appl. Math. Model., 25, 41(2000).
[10] Z R Liu, C X Yang. J. Math. Anal. Appl., 275, 1(2002).
[11] J B Li. Int. J. Bifur. Chaos, 22(2012).
[12] M Song, Z R Liu. Math. Method Appl. Sci., 37, 393(2014).
[13] Z S Wen. Math. Method Appl. Sci., 38, 2363(2015).
[14] M Song. Nonlinear Dynamics, 80, 431(2015).
[15] M Song, Z R Liu, C X Yang. Acta Math. Sin., 31, 1043(2015).
[16] H X Zhao, S Q Tang. Math. Method Appl. Sci., 40, 2702(2017).
[17] Y Li, S Y Li, R Y Wei. Nonlinear Dynam., 88, 609(2017).
[18] L J Shi, Z S Wen. Chin. Phy. B, 28(2019).
[19] J B Li, H H Dai. On the study of singular nonlinear traveling wave equations: Dynamical syetem approach(2007).
[20] J B Li. Bifurcations and exact solutions in invariant manifolds for nonlinear wave equation(2019).
Get Citation
Copy Citation Text
Ming Song, Beidan Wang, Jun Cao. Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation[J]. Chinese Physics B, 2020, 29(10):
Received: Apr. 28, 2020
Accepted: --
Published Online: Apr. 21, 2021
The Author Email: Song Ming (songming12_15@163.com)