Journal of Inorganic Materials, Volume. 39, Issue 11, 1245(2024)
[1] V GUPTA, R MALIK, L KUMAR. Highly efficient and cost- effective polyaniline-based ammonia sensor on the biodegradable paper substrate at room temperature. Materials Chemistry and Physics, 128388(2023).
[2] P P LI, B WANG, C QIN et al. Band-gap-tunable CeO2 nanoparticles for room-temperature NH3 gas sensors. Ceramics International, 19232(2020).
[4] K P YUAN, L Y ZHU, J H YANG et al. Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing. Journal of Colloid and Interface Science, 81(2020).
[5] S K GAUTAM, S PANDA. Highly sensitive Cu-ethylenediamine/ PANI composite sensor for NH3 detection at room temperature. Talanta, 124418(2023).
[6] U T NAKATE, P BHUYAN, Y T YU et al. Synthesis and characterizations of highly responsive H2S sensor using p-type Co3O4 nanoparticles/nanorods mixed nanostructures. International Journal of Hydrogen Energy, 8145(2022).
[7] X H WEN, J H SUN, L X SUN et al. Preparation and acetone sensing properties of CuO-CeO2 nanocomposites with p-n heterostructures. Fine Chemistry, 736(2021).
[8] S R ANANDA, L KUMARI, M V MURUGENDRAPPA. Studies on room-temperature acetone sensing properties of ZnCo2O4/PPy and MnCo2O4/PPy nanocomposites for diabetes diagnosis. Applied Physics A, 669(2022).
[10] L GAO, C Q YIN, Y Y LUO et al. Facile synthesis of the composites of polyaniline and TiO2 nanoparticles using self-assembly method and their application in gas sensing. Nanomaterials, 493(2019).
[11] M SETKA, F A BAHOS, D MATATAGUI et al. Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene. Sensors and Actuators B: Chemical, 127337(2020).
[12] Y SOOD, V S PAWAR, H MUDILA et al. A review on synthetic strategies and gas sensing approach for polypyrrole-based hybrid nanocomposites. Polymer Engineering and Science, 2949(2021).
[13] D Z ZHANG, Z L WU, X Q ZONG et al. Fabrication of polypyrrole/ Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sensors and Actuators B: Chemical, 575(2018).
[14] A KAUR, R KUMAR. Sensing of ammonia at room temperature by polypyrrole-tin oxide nanostructures: investigation by Kelvin probe force microscopy. Sensors and Actuators A: Physical, 113(2016).
[15] S JAIN, N KARMAKAR, A SHAH et al. Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: effect of CSA doping and their structural, chemical, thermal and gas sensing behavior. Applied Surface Science, 1317(2017).
[16] Y Z MA, S ZHANG, Q WANG et al. Ag-decorated MoO3 microspheres gas sensor for triethylamine detection with rapid response/recovery. Inorganic Chemistry Communications, 111442(2023).
[17] C WANG, M YANG, L H LIU et al. One-step synthesis of polypyrrole/Fe2O3 nanocomposite and the enhanced response of NO2 at low temperature. Journal of Colloid and Interface Science, 312(2020).
[18] A T MANE, S T NAVALE, V B PATIL. Room temperature NO2 gas sensing properties of DBSA doped PPy-WO3 hybrid nanocomposite sensor. Organic Electronics, 15(2015).
[19] A SOBHANI-NASAB, S BEHVANDI, M A KARIMI et al. Synergetic effect of graphene oxide and C3N4 as co-catalyst for enhanced photocatalytic performance of dyes on Yb2(MoO4)3/ YbMoO4 nanocomposite. Ceramics International, 17847(2019).
[20] Z NEISI, Z ANSARI-ASL, S JAFARINEJAD-FARSANGI et al. Synthesis, characterization and biocompatibility of polypyrrole/ Cu(II) metal-organic framework nanocomposites. Colloids and Surfaces B: Biointerfaces, 365(2019).
[21] K F ZHOU, D F SHEN, X LI et al. Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine. Talanta, 120507(2020).
[22] S R NALAGE, S T NAVALE, R S MANE et al. Preparation of camphor-sulfonic acid doped PPy-NiO hybrid nanocomposite for detection of toxic nitrogen dioxide. Synthetic Metals, 426(2015).
[24] N H IDRIS, J Z WANG, S L CHOU et al. Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries. Journal of Materials Research, 860(2011).
[25] Y JIAO, G CHEN, D H CHEN et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. Journal of Materials Chemistry A, 23744(2017).
[26] G S ZAKHAROVA, C SCHMIDT, A OTTMANN et al. Microwave-assisted hydrothermal synthesis and electrochemical studies of
[27] B T RAUT, M A CHOUGULE, A A GHANWAT et al. Polyaniline-CdS nanocomposites: effect of camphor sulfonic acid doping on structural, microstructural, optical and electrical properties. Journal of Materials Science-Materials in Electronics, 2104(2012).
[28] Z Q WEI, S HOU, X LIN et al. Unexpected boosted solar water oxidation by nonconjugated polymer-mediated tandem charge transfer. Journal of the American Chemical Society, 21899(2020).
[29] W L YU, F LI, T HUANG et al. Go beyond the limit: rationally designed mixed-dimensional perovskite/semiconductor heterostructures and their applications. Innovation, 100363(2023).
[30] Z Z HAN, J J WANG, L LIAO et al. Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism. Applied Surface Science, 349(2013).
[31] N HONGSITH, S CHANSURIYA, S KOENROBKET et al. Investigating of transition state on the Pd-Au decorated ZnO nanoparticle layers for gas sensor application. Heliyon, 19402(2023).
[32] J N CHANG, H J ZHANG, J L CAO et al. Ultrahigh sensitive and selective triethylamine sensor based on h-BN modified MoO3 nanowires. Advanced Powder Technology, 103432(2022).
[33] M IKRAM, L J LIU, H LV et al. Intercalation of Bi2O3/Bi2S3 nanoparticles into highly expanded MoS2 nanosheets for greatly enhanced gas sensing performance at room temperature. Journal of Hazardous Materials, 335(2019).
[34] J G YU, L YUE, S W LIU et al. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres. Journal of Colloid and Interface Science, 58(2009).
[35] H Y ZHAO, J H SUN, J M LIU et al. UV-triggered carrier transport regulation of fibrous NiO/SnO2 heterostructures for triethylamine detection. Chemical Engineering Journal, 146687(2023).
[36] X LI, L J SUN, X Y YANG et al. Enhancing the colorimetric detection of H2O2 and ascorbic acid on polypyrrole coated fluconazole-functionalized POMOFs. Analyst, 3347(2019).
[37] J ZHANG, C Y WU, T LI et al. Highly sensitive and ultralow detection limit of room-temperature NO2 sensors using
[38] T T QIAO, G S WANG, Y B SHEN et al. Rational design of CuO/In2O3 heterostructures with flower-like structures for low temperature detection of formaldehyde. Journal of Alloys and Compounds, 16959(2022).
[39] J Y LIU, M J DAI, T S WANG et al. Enhanced gas sensing properties of SnO2 hollow spheres decorated with CeO2 nanoparticles heterostructure composite materials. ACS Applied Materials & Interfaces, 6669(2016).
[40] E ANDREOLI, D A ROONEY, W REDINGTON et al. Electrochemical deposition of hierarchical micro/nanostructures of copper hydroxysulfates on polypyrrole-polystyrene sulfonate films. Journal of Physical Chemistry C, 8725(2011).
[41] N KARMAKAR, R FERNANDES, S JAIN et al. Room temperature NO2 gas sensing properties of p-toluenesulfonic acid doped silver-polypyrrole nanocomposite. Sensors and Actuators B: Chemical, 118(2017).
[42] L XU, M Y GE, F ZHANG et al. Nanostructured of SnO2/NiO composite as a highly selective formaldehyde gas sensor. Journal of Materials Research, 3079(2020).
[43] S D LAWANIYA, S KUMAR, Y YU et al. Ammonia sensing properties of PPy nanostructures (urchins/flowers) towards low-cost and flexible gas sensors at room temperature. Sensors and Actuators B: Chemical, 133566(2023).
[44] K MALOOK, H KHAN, M SHAH. Ammonia sensing behavior of polypyrrole-bimetallic oxide composites. Polymer Composites, 2610(2020).
[45] L LU, M Y LIU, Q L SUI et al. MXene/MoS2 nanosheet/ polypyrrole for high-sensitivity detection of ammonia gas at room temperature. Materials Today Communications, 106239(2023).
[46] A HUSAIN, S A AL-ZAHRANI, OTAIBI A AL et al. Fabrication of reproducible and selective ammonia vapor sensor-pellet of polypyrrole/cerium oxide nanocomposite for prompt detection at room temperature. Polymers, 1829(2021).
[47] H T HIEN, D T A THU, P Q NGAN et al. High NH3 sensing performance of NiO/PPy hybrid nanostructures. Sensors and Actuators B: Chemical, 129986(2021).
[48] S L AMITH, K GURUNATHAN. Active sites tailored rGO-PPy nanosheets with high crystalline tetragonal SnO2 nanocrystals for ammonia e-sensitization at room temperature. Journal of Alloys and Compounds, 170819(2023).
[49] C Y SHEN, T T HUNG, Y W CHUANG et al. Room-temperature NH3 gas surface acoustic wave (SAW) sensors based on graphene/PPy composite films decorated by Au nanoparticles with ppb detection ability. Polymers, 4353(2023).
[50] B B PATOWARY, S LASKAR, R NARZARY et al. Synthesis, characterization, and study of NO2 gas sensing behavior of CSA doped PANi-Ta2O5 nanocomposite. IEEE Sensors Journal, 3429(2020).
Get Citation
Copy Citation Text
Ningning DING, Jianhua SUN, Xu WEI, Lixia SUN.
Category:
Received: Apr. 26, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: SUN Lixia (binglin0628@163.com)