Electro-Optic Technology Application, Volume. 37, Issue 1, 10(2022)

Review on Novel 6.45 μm Laser Scalpel, the Medical Applications and Laser Sources (Invited)

SHEN Yu1,2, ZONG Nan1,2, WEN Ya3, BO Yong1,2, and PENG Qinjun1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(47)

    [1] [1] EDWARDS G, LOGAN R, COPELAND M, et al. Tissue ablation by a free-electron laser tuned to the amide II band[J]. Nature, 1994, 371(6496):416-419.

    [2] [2] EDWARDS G S, AUSTIN R H, CARROLL F E, et al. Free-electron-laser-based biophysical and biomedical instrumentation[J]. Review of Scientific Instruments, 2003, 74(7): 3207-3245.

    [3] [3] MACKANOS M A, KOZUB J A, JANSEN E D. Effect of mark-III free electron laser micropulse duration on mid-infrared soft tissue ablation characteristics, in lasers and electro-optics society[J]. The 17th Annual Meeting of the IEEE, 2004, 2: 971-972.

    [4] [4] MACKANOS M, SIMANOVSKII D, CONTAG C, et al. Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL)[J]. Lasers in Medical Science, 2012, 27(6): 1213-1223.

    [5] [5] SURGERY M-I F L. PPT: advances in the physical understanding of laser surgery at 6.45 μm[J] .2004.

    [6] [6] DEECH J, SANDERS J. New self-terminating laser transitions in calcium and strontium[J]. Quantum Electronics, IEEE Journal of, 1968, 4(7): 474-474.

    [7] [7] DIMITROV K D, KOSTADINOV I K, SABOTINOV N V. Infrared strontium vapor laser[J]. Int J Photon Opt Technol, 2019, 5(2): 4-6.

    [9] [9] PLATONOV A V, SOLDATOV A N, FILONOV A G. Pulsed strontium vapor laser[J]. Soviet Journal of Quantum Electronics, 1978, 8(1): 120-121.

    [11] [11] SOLDATOV A, FILONOV A, SHUMEIKO A, et al. A sealed-off strontium vapor laser[C]//The International Society for Optical Engineering, 2004, 5483.

    [12] [12] TEMELKOV K, VUCHKOV N, FREIJO-Martin I, et al. Experimental study on the spectral and spatial characteristics of a high-power He-SrBr2 laser[J]. Journal of Physics D: Applied Physics, 2009, 42(11): 115105.

    [13] [13] DEECH J S, SANDERS J H. New self-terminating laser transitions in calcium and strontium[J]. IEEE Journal of Quantum Electronics, 1968, 4(7): 474-474.

    [14] [14] EDWARDS G, PEARLSTEIN R, COPELAND M, et al. 6450 nm wavelength tissue ablation using a nanosecond laser based on difference frequency mixing and stimulated Raman scattering[J]. Optics Letters, 2007, 32(11): 1426-1428.

    [15] [15] KOZUB J, IVANOV B, JAYASINGHE A, et al. Raman-shifted alexandrite laser for soft tissue ablation in the 6-to 7-μm wavelength range[J]. Biomedical Optics Express, 2011, 2(5): 1275-1281.

    [16] [16] KOZUB J A, SHEN J-H, JOOK M S, et al. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser[J]. Journal of biomedical optics, 2015, 20(10): 105004.

    [17] [17] MIRSURG. Project final report: mid-infrared solid-state laser systems for minimally invasive surgery[R], 2011.

    [18] [18] STOEPPLER G, EICHHOM M, SCHELLHORN M, et al. Zgp ristra OPO operating at 6.45 μm and application[J]. Seminars in Liver Sisease, 2012: AM1A 5.

    [19] [19] KNIPPELS G M H, A F G van der Meer, MACLEOD A M, et al. Mid-infrared (2.75-6.0-μm) second-harmonic generation in LiInS2[J]. Opt Lett, 2001, 26(9): 617-619.

    [20] [20] HOLINGA G J. A new optical parametric amplifier based on lithium thioindate used for sum frequency generation vibrational spectroscopic studies of the Amide I mode of an interfacial model peptide[J]. Applied Spectroscopy, 2008, 62(9): 937-940.

    [21] [21] YORK R L, HOLINGA G J, GUYER D R, et al. A new optical parametric amplifier based on lithium thioindate used for sum frequency generation vibrational spectroscopic studies of the amide I mode of an interfacial model peptide[J]. Appl Spectrosc, 2008, 62(9): 937-940.

    [22] [22] ROTERMUND F, PETROV V, NOACK F, et al. Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm[J]. Applied Physics Letters, 2001, 78(18): 2623-2625.

    [23] [23] FOSSIE S R, SALAUN S, MANGIN J, et al. Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate[J]. Journal of the Optical Society of America B, 2004, 21(11): 1981-2007.

    [24] [24] V V Jean-Jacques Zondy, ALEXANDER Yelisseyev, SERGEI Lobanov, et al. LiInSe2 nanosecond optical parametric oscillator[J]. Opt Lett, 2005, 30(18): 2460-2462.

    [25] [25] A T Georgi Marchev, VITALIY Vedenyapin, DMITRI Kolker, et al. Nd:YAG pumped nanosecond optical parametric[J]. Opt Express, 2009, 17(16): 13441-13446.

    [26] [26] KOSTYUKOVA N Y, BOYKO A A, BADIKOV V, et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Opt Lett, 2016, 41(15): 3667-3670.

    [27] [27] ZHANG J J, YANG F, YANG S D, et al. Tunable mid-IR optical parametric amplifier pumped at 1 064 nm based on a wideband-gap BaGa4S7 crystal[J]. Infrared Physics&Technology, 2020, 111.

    [28] [28] ZHANG J, WANG Q, HAO J, et al. Broadband, few-cycle mid-infrared continuum based on the intra-pulse difference frequency generation with BGSe crystals[J]. Opt Express, 2020, 28(25): 37903-37909.

    [29] [29] SUN M G, CAO Z S, YAO J Y, et al. Continuous-wave difference-frequency generation based on BaGa4Se7 crystal[J]. Opt Express, 2019, 27(4): 4014-4023.

    [30] [30] LUO X, LI Z, GUO Y, et al. Recent progress on new infrared nonlinear optical materials with application prospect[J]. Journal of Solid State Chemistry, 2019, 270: 674-687.

    [31] [31] DAS S. Optical parametric oscillator: status of tunable radiation in mid-IR to IR spectral range based on ZnGeP2 crystal pumped by solid state lasers[J]. Optical and Quantum Electronics, 2019, 51(3).

    [32] [32] KOLKER D B, KOSTYUKOVA N Y, BOYKO A A, et al. Widely tunable (2.6~10.4 μm) BaGa4Se7optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser[J]. Journal of Physics Communications, 2018, 2(3).

    [33] [33] LIANG F, KANG L, LIN Z, et al. Mid-infrared nonlinear optical materials based on metal chalcogenides: structure-property relationship[J]. Crystal Growth&Design, 2017, 17(4): 2254-2289.

    [34] [34] S Chaitanya Kumar, K T Zawilski, P G Schunemann, et al. High-repetition-rate, deep-infrared, picosecond optical parametric oscillator based on CdSiP2[J]. Opt Lett, 2017, 42(18): 3606-3609.

    [35] [35] SEREBRYAKOV V S, BOIKO E V, KALINSTEV A G, et al. Mid-IR laser for high-precision surgery[J]. Journal of Optical Technology, 2016, 82(12).

    [36] [36] KOSTYUKOVA N Y, BOYKO A A, BADIKOV V, et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Opt Lett, 2016, 41(15): 3667-3670.

    [37] [37] CHAITANYA Kumar S, ESTEBAN-Martin A, SANTANA A, et al. Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2[J]. Opt Lett, 2016, 41(14): 3355-3358.

    [38] [38] YANG F, YAO J Y, XU H Y, et al. Midinfrared optical parametric amplifier with 6.4-11 μm range based on BaGa4Se7[J]. IEEE Photonics Technology Letters, 2015, 27(10): 1100-1103.

    [39] [39] PEERMANS A, DAN L, CECCHET F, et al. Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4 μm[J]. Opt Lett, 2009, 34(20): 3053-3055.

    [40] [40] KUMAR S C, AGNESI A, DALLOCCHIO P, et al. Compact, 1.5 mJ, 450 MHz, CdSiP 2 picosecond optical parametric oscillator near 6.3 μm[J]. Opt Lett, 2011, 36(16): 3236-3238.

    [41] [41] KUMARr S C, JELINEK M, BAUDISCH M, et al. Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP 2[J]. Opt Express, 2012, 20(14): 15703-15709.

    [42] [42] SAIKAWA J, MIYAZAKI M, FUJII M, et al. High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices[J]. Opt Lett, 2008, 33(15): 1699-1701.

    [43] [43] FURUKI K, HORIKAWA M T, OGAWA A, et al. Tunable mid-infrared (6.3~12 μm) optical vortex pulse generation[J]. Opt Express, 2014, 22(21): 26351-26357.

    [44] [44] STOEPPLER G, SCHELLHORN M, EICHHORN M. Enhanced beam quality for medical applications at 6.45 μm by using a Ristra ZGP OPO[J]. Laser Physics, 2012, 22(6): 1095-1098.

    [45] [45] KATO K. High-power difference-frequency generation at 5-11 μm in AgGaS2[J]. IEEE Journal of Quantum Electronics, 1984, 20(7): 698-699.

    [46] [46] VODOPYANOV K, MAFFETONE J, ZWIEBACK I, et al. AgGaS 2 optical parametric oscillator continuously tunable from 3.9 to 11.3 μm[J]. Applied Physics Letters, 1999, 75(9): 1204-1206.

    [47] [47] CHEN W, POULLET E, BURIE J, et al. Widely tunable continuous-wave mid-infrared radiation (5.5-11 μm) by difference-frequency generation in LiInS 2 crystal[J]. Applied optics, 2005, 44(19): 4123-4129.

    [48] [48] MARCHEV G, TYAZHEV A, VEDENYAPIN V, et al. Nd: YAG pumped nanosecond optical parametric oscillator based on LiInSe2 with tunability extending from 4.7 to 8.7 μm[J]. Opt Express, 2009, 17(16): 13441-13446.

    [49] [49] TYAZHEV A, KOLKER D, MARCHEV G, et al. Mid-infrared optical parametric oscillation in the wide-bandgap BaGa4S7 nonlinear crystal[J]. Opt Lett, 2012, 37(19): 4146-4148.

    Tools

    Get Citation

    Copy Citation Text

    SHEN Yu, ZONG Nan, WEN Ya, BO Yong, PENG Qinjun. Review on Novel 6.45 μm Laser Scalpel, the Medical Applications and Laser Sources (Invited)[J]. Electro-Optic Technology Application, 2022, 37(1): 10

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 24, 2021

    Accepted: --

    Published Online: Apr. 22, 2022

    The Author Email:

    DOI:

    Topics