Electro-Optic Technology Application, Volume. 37, Issue 1, 10(2022)
Review on Novel 6.45 μm Laser Scalpel, the Medical Applications and Laser Sources (Invited)
[1] [1] EDWARDS G, LOGAN R, COPELAND M, et al. Tissue ablation by a free-electron laser tuned to the amide II band[J]. Nature, 1994, 371(6496):416-419.
[2] [2] EDWARDS G S, AUSTIN R H, CARROLL F E, et al. Free-electron-laser-based biophysical and biomedical instrumentation[J]. Review of Scientific Instruments, 2003, 74(7): 3207-3245.
[3] [3] MACKANOS M A, KOZUB J A, JANSEN E D. Effect of mark-III free electron laser micropulse duration on mid-infrared soft tissue ablation characteristics, in lasers and electro-optics society[J]. The 17th Annual Meeting of the IEEE, 2004, 2: 971-972.
[4] [4] MACKANOS M, SIMANOVSKII D, CONTAG C, et al. Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL)[J]. Lasers in Medical Science, 2012, 27(6): 1213-1223.
[5] [5] SURGERY M-I F L. PPT: advances in the physical understanding of laser surgery at 6.45 μm[J] .2004.
[6] [6] DEECH J, SANDERS J. New self-terminating laser transitions in calcium and strontium[J]. Quantum Electronics, IEEE Journal of, 1968, 4(7): 474-474.
[7] [7] DIMITROV K D, KOSTADINOV I K, SABOTINOV N V. Infrared strontium vapor laser[J]. Int J Photon Opt Technol, 2019, 5(2): 4-6.
[9] [9] PLATONOV A V, SOLDATOV A N, FILONOV A G. Pulsed strontium vapor laser[J]. Soviet Journal of Quantum Electronics, 1978, 8(1): 120-121.
[11] [11] SOLDATOV A, FILONOV A, SHUMEIKO A, et al. A sealed-off strontium vapor laser[C]//The International Society for Optical Engineering, 2004, 5483.
[12] [12] TEMELKOV K, VUCHKOV N, FREIJO-Martin I, et al. Experimental study on the spectral and spatial characteristics of a high-power He-SrBr2 laser[J]. Journal of Physics D: Applied Physics, 2009, 42(11): 115105.
[13] [13] DEECH J S, SANDERS J H. New self-terminating laser transitions in calcium and strontium[J]. IEEE Journal of Quantum Electronics, 1968, 4(7): 474-474.
[14] [14] EDWARDS G, PEARLSTEIN R, COPELAND M, et al. 6450 nm wavelength tissue ablation using a nanosecond laser based on difference frequency mixing and stimulated Raman scattering[J]. Optics Letters, 2007, 32(11): 1426-1428.
[15] [15] KOZUB J, IVANOV B, JAYASINGHE A, et al. Raman-shifted alexandrite laser for soft tissue ablation in the 6-to 7-μm wavelength range[J]. Biomedical Optics Express, 2011, 2(5): 1275-1281.
[16] [16] KOZUB J A, SHEN J-H, JOOK M S, et al. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser[J]. Journal of biomedical optics, 2015, 20(10): 105004.
[17] [17] MIRSURG. Project final report: mid-infrared solid-state laser systems for minimally invasive surgery[R], 2011.
[18] [18] STOEPPLER G, EICHHOM M, SCHELLHORN M, et al. Zgp ristra OPO operating at 6.45 μm and application[J]. Seminars in Liver Sisease, 2012: AM1A 5.
[19] [19] KNIPPELS G M H, A F G van der Meer, MACLEOD A M, et al. Mid-infrared (2.75-6.0-μm) second-harmonic generation in LiInS2[J]. Opt Lett, 2001, 26(9): 617-619.
[20] [20] HOLINGA G J. A new optical parametric amplifier based on lithium thioindate used for sum frequency generation vibrational spectroscopic studies of the Amide I mode of an interfacial model peptide[J]. Applied Spectroscopy, 2008, 62(9): 937-940.
[21] [21] YORK R L, HOLINGA G J, GUYER D R, et al. A new optical parametric amplifier based on lithium thioindate used for sum frequency generation vibrational spectroscopic studies of the amide I mode of an interfacial model peptide[J]. Appl Spectrosc, 2008, 62(9): 937-940.
[22] [22] ROTERMUND F, PETROV V, NOACK F, et al. Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm[J]. Applied Physics Letters, 2001, 78(18): 2623-2625.
[23] [23] FOSSIE S R, SALAUN S, MANGIN J, et al. Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate[J]. Journal of the Optical Society of America B, 2004, 21(11): 1981-2007.
[24] [24] V V Jean-Jacques Zondy, ALEXANDER Yelisseyev, SERGEI Lobanov, et al. LiInSe2 nanosecond optical parametric oscillator[J]. Opt Lett, 2005, 30(18): 2460-2462.
[25] [25] A T Georgi Marchev, VITALIY Vedenyapin, DMITRI Kolker, et al. Nd:YAG pumped nanosecond optical parametric[J]. Opt Express, 2009, 17(16): 13441-13446.
[26] [26] KOSTYUKOVA N Y, BOYKO A A, BADIKOV V, et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Opt Lett, 2016, 41(15): 3667-3670.
[27] [27] ZHANG J J, YANG F, YANG S D, et al. Tunable mid-IR optical parametric amplifier pumped at 1 064 nm based on a wideband-gap BaGa4S7 crystal[J]. Infrared Physics&Technology, 2020, 111.
[28] [28] ZHANG J, WANG Q, HAO J, et al. Broadband, few-cycle mid-infrared continuum based on the intra-pulse difference frequency generation with BGSe crystals[J]. Opt Express, 2020, 28(25): 37903-37909.
[29] [29] SUN M G, CAO Z S, YAO J Y, et al. Continuous-wave difference-frequency generation based on BaGa4Se7 crystal[J]. Opt Express, 2019, 27(4): 4014-4023.
[30] [30] LUO X, LI Z, GUO Y, et al. Recent progress on new infrared nonlinear optical materials with application prospect[J]. Journal of Solid State Chemistry, 2019, 270: 674-687.
[31] [31] DAS S. Optical parametric oscillator: status of tunable radiation in mid-IR to IR spectral range based on ZnGeP2 crystal pumped by solid state lasers[J]. Optical and Quantum Electronics, 2019, 51(3).
[32] [32] KOLKER D B, KOSTYUKOVA N Y, BOYKO A A, et al. Widely tunable (2.6~10.4 μm) BaGa4Se7optical parametric oscillator pumped by a Q-switched Nd:YLiF4 laser[J]. Journal of Physics Communications, 2018, 2(3).
[33] [33] LIANG F, KANG L, LIN Z, et al. Mid-infrared nonlinear optical materials based on metal chalcogenides: structure-property relationship[J]. Crystal Growth&Design, 2017, 17(4): 2254-2289.
[34] [34] S Chaitanya Kumar, K T Zawilski, P G Schunemann, et al. High-repetition-rate, deep-infrared, picosecond optical parametric oscillator based on CdSiP2[J]. Opt Lett, 2017, 42(18): 3606-3609.
[35] [35] SEREBRYAKOV V S, BOIKO E V, KALINSTEV A G, et al. Mid-IR laser for high-precision surgery[J]. Journal of Optical Technology, 2016, 82(12).
[36] [36] KOSTYUKOVA N Y, BOYKO A A, BADIKOV V, et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Opt Lett, 2016, 41(15): 3667-3670.
[37] [37] CHAITANYA Kumar S, ESTEBAN-Martin A, SANTANA A, et al. Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2[J]. Opt Lett, 2016, 41(14): 3355-3358.
[38] [38] YANG F, YAO J Y, XU H Y, et al. Midinfrared optical parametric amplifier with 6.4-11 μm range based on BaGa4Se7[J]. IEEE Photonics Technology Letters, 2015, 27(10): 1100-1103.
[39] [39] PEERMANS A, DAN L, CECCHET F, et al. Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4 μm[J]. Opt Lett, 2009, 34(20): 3053-3055.
[40] [40] KUMAR S C, AGNESI A, DALLOCCHIO P, et al. Compact, 1.5 mJ, 450 MHz, CdSiP 2 picosecond optical parametric oscillator near 6.3 μm[J]. Opt Lett, 2011, 36(16): 3236-3238.
[41] [41] KUMARr S C, JELINEK M, BAUDISCH M, et al. Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP 2[J]. Opt Express, 2012, 20(14): 15703-15709.
[42] [42] SAIKAWA J, MIYAZAKI M, FUJII M, et al. High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices[J]. Opt Lett, 2008, 33(15): 1699-1701.
[43] [43] FURUKI K, HORIKAWA M T, OGAWA A, et al. Tunable mid-infrared (6.3~12 μm) optical vortex pulse generation[J]. Opt Express, 2014, 22(21): 26351-26357.
[44] [44] STOEPPLER G, SCHELLHORN M, EICHHORN M. Enhanced beam quality for medical applications at 6.45 μm by using a Ristra ZGP OPO[J]. Laser Physics, 2012, 22(6): 1095-1098.
[45] [45] KATO K. High-power difference-frequency generation at 5-11 μm in AgGaS2[J]. IEEE Journal of Quantum Electronics, 1984, 20(7): 698-699.
[46] [46] VODOPYANOV K, MAFFETONE J, ZWIEBACK I, et al. AgGaS 2 optical parametric oscillator continuously tunable from 3.9 to 11.3 μm[J]. Applied Physics Letters, 1999, 75(9): 1204-1206.
[47] [47] CHEN W, POULLET E, BURIE J, et al. Widely tunable continuous-wave mid-infrared radiation (5.5-11 μm) by difference-frequency generation in LiInS 2 crystal[J]. Applied optics, 2005, 44(19): 4123-4129.
[48] [48] MARCHEV G, TYAZHEV A, VEDENYAPIN V, et al. Nd: YAG pumped nanosecond optical parametric oscillator based on LiInSe2 with tunability extending from 4.7 to 8.7 μm[J]. Opt Express, 2009, 17(16): 13441-13446.
[49] [49] TYAZHEV A, KOLKER D, MARCHEV G, et al. Mid-infrared optical parametric oscillation in the wide-bandgap BaGa4S7 nonlinear crystal[J]. Opt Lett, 2012, 37(19): 4146-4148.
Get Citation
Copy Citation Text
SHEN Yu, ZONG Nan, WEN Ya, BO Yong, PENG Qinjun. Review on Novel 6.45 μm Laser Scalpel, the Medical Applications and Laser Sources (Invited)[J]. Electro-Optic Technology Application, 2022, 37(1): 10
Category:
Received: Sep. 24, 2021
Accepted: --
Published Online: Apr. 22, 2022
The Author Email:
CSTR:32186.14.