Infrared and Laser Engineering, Volume. 52, Issue 8, 20230337(2023)

Research progress of high-power free-space Raman amplification technology (invited)

Zhenxu Bai1,2, Xin Hao1,2, Hao Zheng1,2, Hui Chen1,2, Yaoyao Qi1,2, Jie Ding1,2, Bingzheng Yan1,2, Can Cui1,2, Yulei Wang1,2、*, and Zhiwei Lv1,2、*
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    Figures & Tables(13)
    Approaches toward high-power lasing
    Schematic diagram of SRS energy level transition
    (a) Schematic diagram of FWM phase matching; (b) Energy level transition diagram of anti-Stokes Raman scattering
    Schematic diagram of beam cleaning device [81]
    Schematic diagram of CH4 gas double-pass Raman amplifier[90]
    Schematic diagram of Raman beam combination in CH4 gas[98]
    Schematic diagram of Raman beam combination in H2 gas [100]
    Schematic diagram of BaWO4 forward Raman amplifier[76]
    Schematic diagram of YVO4 non-collinear Raman amplifier[113]
    Schematic diagram of Raman beam combination in BaWO4[117]
    Schematic diagram of Raman beam combination in diamond[66]
    • Table 1. Research progress of Raman amplifier in gas

      View table
      View in Article

      Table 1. Research progress of Raman amplifier in gas

      YearRaman medium StructurePump wavelength/μm Stokes wavelength/μm Output energy/mJ Pulse duration/ns Peak power/MW Ref.
      1979H2Beam combination1.061.133603120[100]
      1980CH4Beam combination0.2480.268-7-[98]
      1983H2Collinear amplifier0.3080.35320504[81]
      1986CH4/H2Beam combination0.2490.268/0.2778400/5000--[101]
      1989H2Beam combination0.3530.414800--[99]
      1996H2Collinear amplifier0.3900.4650.020.0003557.1[73]
      2001CH4Collinear amplifier0.2480.268-5-[83]
      2009D2Collinear amplifier1.0641.560250462.5[79]
      2016H2Collinear amplifier1.061.944--[80]
    • Table 2. Research progress of crystalline Raman amplifier

      View table
      View in Article

      Table 2. Research progress of crystalline Raman amplifier

      YearRaman mediumStructurePump wavelength/ μm Stokes wavelength/ μm Output energy/ mJ Pulse duration/ns Peak power/MW Ref.
      2008Ba(NO3)2Collinear amplifier1.0641.19763--[106]
      2008Ba(NO3)2Non-collinear amplifier0.8000.873310−430000[114]
      2009YVO4Collinear amplifier1.0641.1743×10−36×10−30.5[107]
      2013Ba(NO3)2Serial laser beam combination1.3191.530503×10−21667[115]
      2014BaWO4Collinear amplifier1.0641.18071.5174.2[109]
      2014PbWO4Collinear amplifier1.0641.17811--[110]
      2015CaWO4Serial laser beam combination1.0641.17826.72.99.2[116]
      2015DiamondCollinear amplifier1.0641.240--0.00696[111]
      2015DiamondParallel laser beam combination1.0641.240--0.00878[66]
      2018BaWO4Collinear amplifier1.0621.1783.5--[89]
      2019BaWO4Serial laser beam combination1.0621.17841.044.10.93[117]
    Tools

    Get Citation

    Copy Citation Text

    Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 4, 2023

    Accepted: Jul. 27, 2023

    Published Online: Oct. 19, 2023

    The Author Email: Wang Yulei (wyl@hebut.edu.cn), Lv Zhiwei (zhiweilv@hebut.edu.cn)

    DOI:10.3788/IRLA20230337

    Topics