Journal of Synthetic Crystals, Volume. 53, Issue 11, 1972(2024)

Kinetic Study on the Sintering Process of Zn1.1Ga1.8Ge0.1O4 Transparent Ceramics

WANG Kaiqiang... YANG Kang, JING Zhengyang, CHEN Bowen, TU Bingtian and WANG Hao* |Show fewer author(s)
Author Affiliations
  • State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • show less
    References(39)

    [1] [1] RUBAT DU MERAC M, KLEEBE H J, MLLER M M, et al. Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel[J]. Journal of the American Ceramic Society, 2013, 96(11): 3341-3365.

    [2] [2] SOKOL M, RATZKER B, KALABUKHOV S, et al. Transparent polycrystalline magnesium aluminate spinel fabricated by spark plasma sintering[J]. Advanced Materials, 2018, 30(41): 1706283.

    [3] [3] SHI Z Q, ZHAO Q L, GUO B, et al. A review on processing polycrystalline magnesium aluminate spinel (MgAl2O4): sintering techniques, material properties and machinability[J]. Materials & Design, 2020, 193: 108858.

    [4] [4] MCCAULEY J W, PATEL P, CHEN M W, et al. AlON: a brief history of its emergence and evolution[J]. Journal of the European Ceramic Society, 2009, 29(2): 223-236.

    [5] [5] ZHENG K P, WANG H, XU P Y, et al. Effect of nitrogen content on optical properties of transparent -AlON polycrystalline ceramics[J]. Journal of the European Ceramic Society, 2021, 41(7): 4319-4326.

    [6] [6] GRANON A, GOEURIOT P, THEVENOT F. Aluminum magnesium oxynitride: a new transparent spine1 ceramic[J]. Journal of the European Ceramic Society, 1995, 15(3): 249-254.

    [7] [7] ZONG X, WANG H, GU H G, et al. Highly transparent Mg0.27Al2.58O3.73N0.27 ceramic fabricated by aqueous gelcasting, pressureless sintering, and post-HIP[J]. Journal of the American Ceramic Society, 2019, 102(11): 6507-6516.

    [8] [8] GOLDSTEIN A, YESHURUN Y, VULFSON M, et al. Fabrication of transparent polycrystalline ZnAl2O4-a new optical bulk ceramic[J]. Journal of the American Ceramic Society, 2012, 95(3): 879-882.

    [9] [9] XU P Y, WANG H, TU B T, et al. Effect of yttrium-doped grain boundary on sintering behavior and properties of transparent ZnAl2O4 ceramics[J]. Journal of the European Ceramic Society, 2024, 44(11): 6597-6606.

    [10] [10] MVEL C, CARREAUD J, DELAIZIR G, et al. First ZnGa2O4 transparent ceramics[J]. Journal of the European Ceramic Society, 2021, 41(9): 4934-4941.

    [11] [11] WANG B, WANG H, CHEN B W, et al. A novel durable spinel-type ZnGa2O4 transparent ceramic with wide transmission range[J]. Scripta Materialia, 2021, 205: 114186.

    [12] [12] LI S Q, WANG H, WANG B, et al. Exploring the relationship between crystalline structure and intrinsic properties for MgGa2O4 transparent ceramic with the bond valence method[J]. Journal of Ceramic Science and Technology, 2021, 12(2): 87-96.

    [13] [13] TU B T, TU G S, WANG H, et al. Highly transparent MgAl0.5Ga1.5O4 ceramic for overcoming the trade-off between infrared transmittance and mechanical properties[J]. Scripta Materialia, 2022, 216: 114756.

    [14] [14] YANG J Y, WANG H, TU B T, et al. Preparation and optical properties of highly transparent MgAl1.9Ga0.1O4 ceramics via aqueous gel-casting method[J]. Journal of the European Ceramic Society, 2023, 43(10): 4506-4516.

    [15] [15] ALLIX M, CHENU S, VRON E, et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4[J]. Chemistry of Materials, 2013, 25(9): 1600-1606.

    [16] [16] GAO D L, KUANG Q Q, GAO F, et al. Achieving opto-responsive multimode luminescence in Zn1+xGa2-2xGexO4: Mn persistent phosphors for advanced anti-counterfeiting and information encryption[J]. Materials Today Physics, 2022, 27: 100765.

    [17] [17] XIONG Y, XIE H Y, RAO Z G, et al. Compositional modulation in ZnGa2O4 via Zn2+/Ge4+ co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties[J]. Journal of Advanced Ceramics, 2021, 10(6): 1360-1370.

    [18] [18] CARREAUD J, DUCLERE J R, LAUNAY Y, et al. Fabrication and optical properties of transparent fine-grained Zn1.1Ga1.8Ge0.1O4 and Ni2+ (or Cr3+)-doped Zn1.1Ga1.8Ge0.1O4 spinel ceramics[J]. Journal of the European Ceramic Society, 2023, 43(11): 4976-4984.

    [19] [19] FU Z C, LI X D, ZHANG M, et al. Achieving fabrication of highly transparent Y2O3 ceramics via air pre-sintering by deionization treatment of suspension[J]. Journal of the American Ceramic Society, 2021, 104(6): 2689-2701.

    [20] [20] REN Y, LI X D, ZHANG Z, et al. Effects of Zr4+-doping on the properties of (Lu, Gd)2O3∶Eu transparent ceramics: insight from the photoluminescent spectra in as-sintered and annealed state[J]. Ceramics International, 2023, 49(11): 18541-18551.

    [21] [21] GALAZKA Z, GANSCHOW S, SCHEWSKI R, et al. Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals[J]. APL Materials, 2019, 7(2): 022512.

    [22] [22] TSUKUMA K, YAMASHITA I, KUSUNOSE T. Transparent 8 mol% Y2O3-ZrO2 (8Y) ceramics[J]. Journal of the American Ceramic Society, 2008, 91(3): 813-818.

    [23] [23] KERBART G, MANIRE C, HARNOIS C, et al. Master sintering curve with dissimilar grain growth trajectories: a case study on MgAl2O4[J]. Journal of the European Ceramic Society, 2021, 41(1): 1048-1051.

    [24] [24] BRATTON R J. Sintering and grain-growth kinetics of MgAl2O4[J]. Journal of the American Ceramic Society, 1971, 54(3): 141-143.

    [25] [25] GOLDSTEIN A. Development of a technology for the obtainment of fine grain size, transparent MgAl2O4 spinel parts[J]. Journal of Ceramic Science and Technology, 2011, 2(1): 1-8.

    [26] [26] WANG S Q, ZHOU T Y, ZHENG X Y, et al. Effect of powder dispersity on the optical properties of HIP sintered MgAl2O4 transparent ceramics[J]. Ceramics International, 2023, 49(23): 37586-37593.

    [27] [27] MACA K, POUCHLY V, BOCCACCINI A R. Sintering densification curve: a practical approach for its construction from dilatometric shrinkage data[J]. Science of Sintering, 2008, 40(2): 117-122.

    [28] [28] BERNARD-GRANGER G, GUIZARD C. Apparent activation energy for the densification of a commercially available granulated zirconia powder[J]. Journal of the American Ceramic Society, 2007, 90(4): 1246-1250.

    [29] [29] BENAMEUR N, BERNARD-GRANGER G, ADDAD A, et al. Sintering analysis of a fine-grained alumina-magnesia spinel powder[J]. Journal of the American Ceramic Society, 2011, 94(5): 1388-1396.

    [30] [30] GASGNIER G, BAUMARD J F, BONCOEUR M, et al. Enhanced densification of yttria by addition of titanium oxide[J]. Journal of the European Ceramic Society, 1994, 13(1): 67-72.

    [31] [31] CHAIM R, KALINA M, SHEN J Z. Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering[J]. Journal of the European Ceramic Society, 2007, 27(11): 3331-3337.

    [32] [32] GUO S Q, WANG H, XU P Y, et al. Effect of pretreated microstructure on subsequent sintering performance of MgAl2O4 ceramics[J]. Ceramics International, 2019, 45(6): 7544-7551.

    [33] [33] WANG J, RAJ R. Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure alumina, and alumina doped with zirconia or titania[J]. Journal of the American Ceramic Society, 1990, 73(5): 1172-1175.

    [34] [34] REIMANIS I, KLEEBE H J. A review on the sintering and microstructure development of transparent spinel (MgAl2O4)[J]. Journal of the American Ceramic Society, 2009, 92(7): 1472-1480.

    [35] [35] RYERSON F J, MCKEEGAN K D. Determination of oxygen self-diffusion in kermanite, anorthite, diopside, and spinel: implications for oxygen isotopic anomalies and the thermal histories of Ca-Al-rich inclusions[J]. Geochimica et Cosmochimica Acta, 1994, 58(17): 3713-3734.

    [36] [36] GRUFFEL P, CARRY C. Effect of grain size on yttrium grain boundary segregation in fine-grained alumina[J]. Journal of the European Ceramic Society, 1993, 11(3): 189-199.

    [37] [37] MAYO M J. Processing of nanocrystalline ceramics from ultrafine particles[J]. International Materials Reviews, 1996, 41(3): 85-115.

    [38] [38] ZHAO Q Q, WANG H, TU B T, et al. KNbTeO6 transparent ceramics prepared by the combination of pressure-less sintering and pseudo hot isostatic pressing[J]. Journal of the European Ceramic Society, 2023, 43(9): 4226-4231.

    [39] [39] KRELL A, HUTZLER T, KLIMKE J. Transmission physics and consequences for materials selection, manufacturing, and applications[J]. Journal of the European Ceramic Society, 2009, 29(2): 207-221.

    Tools

    Get Citation

    Copy Citation Text

    WANG Kaiqiang, YANG Kang, JING Zhengyang, CHEN Bowen, TU Bingtian, WANG Hao. Kinetic Study on the Sintering Process of Zn1.1Ga1.8Ge0.1O4 Transparent Ceramics[J]. Journal of Synthetic Crystals, 2024, 53(11): 1972

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 16, 2024

    Accepted: Jan. 2, 2025

    Published Online: Jan. 2, 2025

    The Author Email: Hao WANG (shswangh@whut.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics