Laser & Optoelectronics Progress, Volume. 59, Issue 13, 1300001(2022)

Research Progress of Terahertz Waveplate Based on Metasurface

Zhuo Zhang, Yandong Gong*, and Ke Li
Author Affiliations
  • School of Instrument Science and Opto-Electronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
  • show less
    Figures & Tables(16)
    THz-QWP structure based on natural materials. (a) THz-QWP based on quartz crystal[13]; (b) THz-QWP based on graphene grating[15]
    Structure of the silicon grating[18]
    Structure of THz-HWP based on SPR. (a) Structure of two-unit cutting line pair[25]; (b) HWP based on MIM structure[30]
    Structure of THz-HWP based on SRR. (a) Unit structure of the QWP; (b) metal layer structure of the rectangular split resonator[32]
    Structure of THz-HWP based on interference coupling. (a) Unit structure of the metasurface half-wave plate; (b) structure of the first metal film; (c) structure of the second metal film[39]
    Structure of THz-HWP based on Mie resonance. (a) Unit cell structure of the all-dielectric metamaterial; (b) top view of the unit cell; (c) bottom view of unit cell[43]
    Structure of switchable THz-WP. (a) Schematic diagram of the VO2-metal hybrid metasurface; (b) top view of the cell structure[51]
    Structure of continuously tuned THz-WP. (a) Structure of the DFLC cell; (b) cross-section of DFLC[54]
    • Table 1. Performance comparison of THz-WP based on natural materials

      View table

      Table 1. Performance comparison of THz-WP based on natural materials

      Ref.YearFunctionFrequency /THzMaterialSizeBandwidth /%Insertion loss /%Structure
      122006QWP0.92quartz32 mm163.045six quartz plates
      132013QWP1.55quartz10 cm32.350nine pieces of quartz plates
      142021QWP0.60DSO50 μm33.391(110)-cut DSO crystals
      0.56370 μm19.893(001)-cut DSO crystals
    • Table 2. Performance comparison of THz-WP based on dielectric grating

      View table

      Table 2. Performance comparison of THz-WP based on dielectric grating

      Ref.YearFunctionFrequency /THzMaterialSizeBandwidth /%Insertion loss /%Structure
      182015QWP0.64silicon500 μm51.630silicon grating
      192016HWP1.05silicon950 μm76.231gradient grating
      202021HWP0.14polystyrene4.8 mm37.0<10low-index polymer grating
      0.3035.0<15
    • Table 3. Performance comparison of THz-WP based on SPR

      View table

      Table 3. Performance comparison of THz-WP based on SPR

      Ref.YearFunctionFrequency /THzDielectricmaterialMetalLayerSize /μmBandwidth /%PCR /%ModeTransmission /%Insertion loss /%Structure
      252009QWP1.30

      bencocycl-

      obutene

      Cu21102.9~55T7445a cut-wire pair
      HWP1.3421102.8~345866
      262014QWP1.07

      polypropy-

      lene

      Au14016.7~30T5570a hole array
      2.292.9~52395
      272018HWP1.1polyimideAu125.354.565R/20metal rods
      282020QWP0.28cyclic olefin copolymerAu354053.370T7543three metallic layers
      292021HWP0.262cyclic olefin copolymerAu312531.7~59T7741three metallic layers
      302013HWP1.04polyimideAu33350.0>50R/20cut-wire array
      312017HWP1.165polyimideAu13384.0>85R/30two pairs of patches
    • Table 4. Performance comparison of THz-WP based on resonator

      View table

      Table 4. Performance comparison of THz-WP based on resonator

      Ref.YearFunctionFrequency /THzDielectric materialMetalLayerSize /μmBandwidth /%PCR /%Transmission /%Insertion loss /%Structure
      322009QWP0.64polyimideAu1201599/50SRR
      332016QWP0.73zeonorTi/Au1232510‒413259SRR
      1.1330~64~90
      342018QWP0.98bisbenzoc-yclobuteneAl24812648036SRR
      352021QWP1.86polyimideAl1374326~2692wave-shape resonator
    • Table 5. Performance comparison of THz-WP based on interference coupling

      View table

      Table 5. Performance comparison of THz-WP based on interference coupling

      Ref.YearFunctionFrequency /THzDielectric materialMetalLayerSizeBandwidth /%PCR /%ModeTransmission /%Insertion loss /%Structure
      362015HWP0.3polyimidestainless steel3270 μm66~100T9510metallic grating
      372019QWP1.02siliconAu344 μm80>90R/8dielectric pillar
      382020HWP0.15polypropy-leneAl2100 μm990T8330Zigzag shape
      392020HWP0.695polyimideAl218 mm73~80T9720

      S-shaped

      chained

    • Table 6. Comparison of THz-WP performance based on meter resonance

      View table

      Table 6. Comparison of THz-WP performance based on meter resonance

      Ref.YearFunctionFrequency /THzDielectric materialSize /μmBandwidth /%PCR /%Transmission /%Insertion loss /%Structure
      412018QWP1.76silicon10059577543elliptical air holes
      422018HWP0.73silicon20035688233two silicon antennas
      432020HWP0.83silicon22036~607740two silicon pillars
    • Table 7. Performance comparison of switchable THz-WP

      View table

      Table 7. Performance comparison of switchable THz-WP

      Ref.YearFunctionFrequency /THzDielectric materialMetalLayerSize /μmBandwidth /%PCR /%External incentives
      472020HWP2.20polymer、VO2Au322.21899temperature
      QWP2.12/2.9344/285
      482020HWP0.99cyclic olefin copolymer、VO2Au475.68398temperature
      QWP1.1383>90
      492021HWP4.59graphene、ZrO2Au327.27390electrostatic gating
      QWP5.4637>90
      502021HWP1.00polyimide、VO2Au339.24096thermal,optical or electrical stimulus
      QWP~100
    • Table 8. Performance comparison of continuously tuned THz-WP

      View table

      Table 8. Performance comparison of continuously tuned THz-WP

      Ref.YearFunctionDielectric materialMetalSize /μmExternal incentivesPrincipleStructure
      542018HWP/QWPsilica、DFLCCu1600

      square

      wave voltage

      birefringence of DFLCsilica-DFLC-silica
      552019HWP/QWPpolydimethylsiloxane、SiO2Au、Cr100

      mechanically

      stretched

      tight couplingelementary resonators
      562020HWP/QWPamorphous silicon/1500angle tunablephotonic inversefreeform metasurface
      572021HWP/QWPsilica、LCAu900variable E-field

      local resonance,

      LC birefringence

      LC integrated metal grating
    Tools

    Get Citation

    Copy Citation Text

    Zhuo Zhang, Yandong Gong, Ke Li. Research Progress of Terahertz Waveplate Based on Metasurface[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1300001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 14, 2021

    Accepted: Sep. 30, 2021

    Published Online: Jun. 6, 2022

    The Author Email: Gong Yandong (eydgong@bistu.edu.cn)

    DOI:10.3788/LOP202259.1300001

    Topics