Acta Photonica Sinica, Volume. 49, Issue 4, 0410004(2020)

Hyperspectral Image Classification Based on Hierarchical Guidance Filtering and Nearest Regularized Subspace

Dong-dong XU, De-qiang CHENG*, Liang-liang CHEN, Qi-qi KOU, and Shou-feng TANG
Author Affiliations
  • School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • show less
    Figures & Tables(16)
    Comparison of spectral feature before and after filtering
    The flowchart of HGF-NRS
    Reconstruction residuals of a test sample
    The influence of varying ε and r on OA
    The influence of varying λ and T on OA
    Classification results of algorithms on Indian Pines dataset
    Classification results of algorithms on Salinas dataset
    Classification results of algorithms on GRSS_DFC_2013 dataset
    • Table 1. Experimental parameters setting

      View table
      View in Article

      Table 1. Experimental parameters setting

      grTλ
      Indian Pines0.01280.05
      Salinas0.000 52180.01
      GRSS_DFC_20130.000 1170.03
    • Table 2. Classification performance comparison (Indian Pines)

      View table
      View in Article

      Table 2. Classification performance comparison (Indian Pines)

      ClassTrainTestNRS[10]Gabor-NRS[19]JCR2[12]HiFi-We[17]EPF-G-g[16]HGF-NRS
      Alfalfa242295.45100.016.20100.0100.0100.0
      Corn-N90133878.6890.1595.8393.3994.2297.93
      Corn-M8075076.5793.4299.4493.6096.6695.05
      Corn6816947.1695.4895.83100.078.9798.83
      Grass-P7141290.8797.5499.5098.7897.53100.0
      Grass-T7465697.6298.1897.5799.6999.2499.70
      Grass-P-M1414100.0100.0100.092.85100.0100.0
      Hay-W7040899.03100.099.51100.0100.0100.0
      Oats101081.82100.0100.0100.0100.0100.0
      Soybean-N7989375.9598.0397.7992.3785.0798.07
      Soybean-M109234680.4892.5295.7597.6295.8498.81
      Soybean-C6952483.1694.1498.5398.0994.4599.05
      Wheat6813799.28100.0100.0100.0100.097.86
      Woods85118095.63100.0100.099.0698.62100.0
      Buildings-G-T-D6831869.9585.9995.56100.085.31100.0
      Stone-S-T464797.8786.7982.35100.092.1694.0
      OA--82.8594.5896.1496.8794.5798.63
      AA--85.5995.7792.1297.8494.8898.71
      Kappa--80.2793.7495.5596.3993.7598.43
    • Table 3. Classification performance comparison (Salinas)

      View table
      View in Article

      Table 3. Classification performance comparison (Salinas)

      ClassTrainTestNRS[10]Gabor-NRS[19]JCR2[12]HiFi-We[17]EPF-G-g[16]HGF-NRS
      Brocoli-G-W-130197999.95100.0100.099.24100.0100.0
      Brocoli-G-W-230369699.8199.1199.7099.8699.9599.92
      Fallow30194695.1596.38100.099.7994.95100.0
      Fallow-R-P30136497.6395.2996.5198.9797.3696.06
      Fallow-S30264899.7799.0699.5899.1699.89100.0
      Stubble30392999.95100.0100.099.2399.92100.0
      Celery30354999.3099.66100.099.04100.099.94
      Grapes-U301124181.4894.5092.3082.9390.5699.94
      Soil-V-D30617399.4498.8899.8099.9699.1399.97
      Corn-S-G-W30324890.8295.7997.9989.2891.4499.16
      Lettuce-R-430103894.8688.1999.81100.094.70100.0
      Lettuce-R-530189798.9199.95100.0100.0100.0100.0
      Lettuce-R-63088699.6699.44100.098.87100.0100.0
      Lettuce-R-730104098.0490.4398.3896.8298.4793.88
      Vinyard-U30723858.0479.5080.9888.3177.0395.98
      Vinyard-V-T30177795.8198.88100.099.3899.3399.83
      OA--88.1194.4895.3693.8693.6799.13
      AA--94.2995.9497.8296.9396.4299.04
      Kappa--86.8193.8794.8393.1792.9699.03
    • Table 4. Classification performance comparison (GRSS_DFC_2013)

      View table
      View in Article

      Table 4. Classification performance comparison (GRSS_DFC_2013)

      ClassTrainTestNRS[10]Gabor-NRS[19]JCR2[12]HiFi-We[17]EPF-G-g[16]HGF-NRS
      Healthy grass99115299.2099.6597.0492.1099.0399.91
      Stressed grass95115998.2997.2299.9195.8596.7199.91
      Synthetic grass96601100.0100.0100.098.83100.0100.0
      Trees94115097.8798.8399.7488.0899.48100.0
      Soil93114997.6099.91100.099.6598.63100.0
      Water91234100.087.6489.6597.86100.0100.0
      Residential98117084.8293.1993.6682.6497.0497.73
      Commercial95114991.5996.8297.4062.8397.3799.56
      Road96115677.3487.5393.5888.0696.8497.22
      Highway95113295.9698.5799.5596.1197.66100.0
      Railway90114593.2397.8298.0689.9593.5999.13
      Parking lot 196113793.0599.27100.086.1094.59100.0
      Parking lot 29237757.9693.7094.6893.3787.6199.47
      Tennis court9033899.40100.094.41100.095.48100.0
      Running track93567100.096.76100.0100.0100.0100.0
      OA--91.8696.6897.6789.7097.1099.42
      AA--92.4296.4697.1891.4396.9499.53
      Kappa--91.1996.4197.4888.8596.8699.37
    • Table 5. Overall classification accuracy in varyingproportion of training samples(Indian Pines)

      View table
      View in Article

      Table 5. Overall classification accuracy in varyingproportion of training samples(Indian Pines)

      Proportion of training samples/%
      12345
      NRS[10]58.78(3.57)66.71(1.93)72.28(2.03)74.46(1.10)76.40(1.48)
      Gabor-NRS[19]58.40(3.54)71.50(2.11)81.13(1.85)84.75(2.73)88.38(1.97)
      JCR2[12]68.42(3.98)79.45(3.79)87.27(1.09)89.88(1.34)92.49(1.06)
      HiFi-We[17]74.74(2.31)85.66(1.98)87.73(3.16)91.72(1.11)93.40(1.03)
      EPF-G-g[16]64.34(3.69)74.63(4.00)83.02(2.96)86.30(0.74)88.54(1.42)
      HGF-NRS79.66(4.04)89.47(1.60)92.75(0.94)94.19(1.29)96.38(0.66)
    • Table 6. Overall classification accuracy in varying proportion of training samples(Salinas)

      View table
      View in Article

      Table 6. Overall classification accuracy in varying proportion of training samples(Salinas)

      Proportion of training samples/%
      0.40.50.60.70.8
      NRS[10]85.33(1.94)87.32(1.74)87.18(1.02)87.52(1.13)87.77(1.23)
      Gabor-NRS[19]90.20(0.97)91.67(0.76)92.42(1.33)92.77(1.30)93.61(0.56)
      JCR2[12]91.30(1.54)92.32(0.61)92.90(1.34)93.48(1.26)94.22(1.36)
      HiFi-We[17]91.78(1.43)91.78(0.94)92.40(1.32)92.50(1.32)93.19(1.14)
      EPF-G-g[16]89.03(3.39)89.23(1.77)91.58(2.71)91.77(2.70)91.34(3.07)
      HGF-NRS96.28(0.79)96.86(0.88)98.40(0.51)98.42(0.50)98.93(0.43)
    • Table 7. Overall classification accuracy in varying proportion of training samples (GRSS_DFC_2013)

      View table
      View in Article

      Table 7. Overall classification accuracy in varying proportion of training samples (GRSS_DFC_2013)

      Proportion of training samples/%
      12345
      NRS[10]80.46(1.67)86.24(1.23)88.70(1.09)90.22(0.56)90.85(0.58)
      Gabor-NRS[19]75.19(1.60)84.76(1.35)88.96(0.85)91.21(0.98)93.21(0.78)
      JCR2[12]84.92(1.33)91.15(0.95)93.85(1.08)95.41(0.94)96.52(0.69)
      HiFi-We[17]80.43(2.62)85.22(1.71)86.71(1.66)88.08(1.03)88.72(0.63)
      EPF-G-g[16]78.08(2.75)87.00(1.60)90.87(2.08)93.11(0.66)93.74(0.61)
      HGF-NRS86.14(2.13)93.00(1.66)95.18(1.03)96.71(0.74)97.61(0.74)
    • Table 8. Computing time of algorithms (s)

      View table
      View in Article

      Table 8. Computing time of algorithms (s)

      NRS[10]Gabor-NRS[19]JCR2[12]HiFi-We[17]EPF-G-g[16]HGF-NRS
      Indian Pines48.333.1049.5589.57.953.4
      Salinas136.691.32140.2647.2613.7179.9
      GRSS_DFC_201390.986.6103.61 208.4108.5270.4
    Tools

    Get Citation

    Copy Citation Text

    Dong-dong XU, De-qiang CHENG, Liang-liang CHEN, Qi-qi KOU, Shou-feng TANG. Hyperspectral Image Classification Based on Hierarchical Guidance Filtering and Nearest Regularized Subspace[J]. Acta Photonica Sinica, 2020, 49(4): 0410004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 3, 2019

    Accepted: Feb. 14, 2020

    Published Online: Apr. 24, 2020

    The Author Email: CHENG De-qiang (chengdq@cumt.edu.cn)

    DOI:10.3788/gzxb20204904.0410004

    Topics