Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2527(2024)
Research Progress in Rare-Earth Ion-Doped Infrared Glass Ceramic Luminescent Materials
[1] [1] KHALID M, USMAN M, ARSHAD I. Germanate glass for laser applications in ~ 2.1 μm spectral region: A review[J]. Heliyon, 2023,9(1): e13031.
[4] [4] MURAVIEV S V, DOROFEEV V V, MOTORIN S E, et al. Lasing at 2.72 μm in an Er3+-doped high-purity tungsten–tellurite glass fiber laser[J]. Opt Lett, 2022, 47(22): 5821–5824.
[5] [5] BEALL G H, DUKE D A. Transparent glass?ceramics[J]. J Mater Sci, 1969, 4(4): 340–352.
[6] [6] EDGAR A, WILLIAMS G V M, HAMELIN J. Optical scattering in glass ceramics[J]. Curr Appl Phys, 2006, 6(3): 355–358.
[7] [7] SHEPILOV M P. On light scattering in fluorozirconate glass?ceramics containing BaCl2 nano-crystals[J]. Opt Mater, 2008,30(6): 839–846.
[8] [8] BORRELLI N F, MITCHELL A L, SMITH C M. Relationship between morphology and transparency in glass?ceramic materials[J].J Opt Soc Am B, JOSAB, 2018, 35(7): 1725–1732.
[9] [9] HOPPER R W. Stochastic theory of scattering from idealized spinodal structures[J]. J Non Cryst Solids, 1985, 70(1): 111–142.
[10] [10] PAN Q W, YANG D D, DONG G P, et al. Nanocrystal-in-glass composite (NGC): A powerful pathway from nanocrystals to advanced optical materials[J]. Prog Mater Sci, 2022, 130: 100998.
[11] [11] BEALL G H, PINCKNEY L R Nanophase glass?ceramics[J]. J Am Ceram Soc, 1999, 82(1):2–16.
[12] [12] DU G X, WEN S F, ZHAO J J, et al. Hybridization engineering of oxyfluoride aluminosilicate glass for construction of dual-phase optical ceramics[J]. Adv Mater, 2023, 35(11): e2205578.
[13] [13] BENCHORFI H, CHENU S, DUCLèRE J R, et al. Crystallization in the TeO2-Ta2O5-Bi2O3 system: From glass to anti-glass to transparent ceramic[J]. J Eur Ceram Soc, 2024, 44(2): 1131–1142.
[14] [14] CRUZ M E, SEDANO M, CASTRO Y, et al. Rare-earth doped transparent oxyfluoride glass?ceramics: Processing is the key[J]. Opt Mater Express, 2022, 12(9): 3493.
[15] [15] WANG J, WANG M T, TIAN Y L, et al. A review on photocatalytic glass ceramics: Fundamentals, preparation, performance enhancement and future development[J]. Catalysts, 2022, 12(10): 1235.
[16] [16] RODRIGUES L R, ACOSTA M H R, ZANOTTO E D. Recent crucial discoveries and perspectives on crystal nucleation in supercooled liquids and oxide glasses[J]. Prog Mater Sci, 2023, 139:101185.
[17] [17] KARPUKHINA N, HILL R G, LAW R V. Crystallisation in oxide glasses–A tutorial review[J]. Chem Soc Rev, 2014, 43(7):2174–2186.
[18] [18] WANG Y H, OHWAKI J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion[J]. Appl Phys Lett, 1993, 63(24): 3268–3270.
[19] [19] SAMSON B N, TICK P A, BORRELLI N F. Efficient neodymium-doped glass?ceramic fiber laser and amplifier[J]. Opt Lett, 2001, 26(3): 145–147.
[20] [20] TIKHOMIROV V K, MéNDEZ-RAMOS J, RODRíGUEZ V D, et al.Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass–ceramics[J]. Opt Mater, 2006, 28(10): 1143–1146.
[21] [21] XIE J H, ZHANG Q, ZHUANG Y X, et al. Enhanced mid-IR emission in Yb3+–Tm3+ Co-doped oxyfluoride glass ceramics[J]. J Alloys Compd, 2011, 509(6): 3032–3037.
[22] [22] QIAO X, FAN X P, WANG M Q, et al. Spectroscopic properties of Er3+/Yb3+co-doped 50SiO2-20Al2O3-30CaF2 glass and glass ceramics[J]. J Phys: Condens Matter, 2006, 18(29): 6937–6951.
[23] [23] QIAO X, FAN X P, WANG M Q, et al. Spectroscopic properties of Er3+ and Yb3+ co-doped glass ceramics containing SrF2 nanocrystals[J]. J Phys D Appl Phys, 2009, 42(5): 055103.
[24] [24] QIAO X, FAN X P, WANG M Q, et al. Spectroscopic properties of Er3+–Yb3+ co-doped glass ceramics containing BaF2 nanocrystals[J]. J Non Cryst Solids, 2008, 354(28): 3273–3277.
[25] [25] GORNI G, BALDA R, FERNáNDEZ J, et al. Oxyfluoride glass–ceramic fibers doped with Nd3+: Structural and optical characterization[J]. Cryst Eng Comm, 2017, 19(44): 6620–6629.
[26] [26] ZHANG C M, FU W B, LI Z W, et al. Improving 2.0 μm fluorescence properties of Er3+/Ho3+ co-doped oxyfluoride silicate glass-ceramics containing YF3 nanocrystals by introducing Li+ ions for mid-infrared lasers[J]. J Lumin, 2020, 227: 117568.
[27] [27] LI X Y, YU Y L, GUAN X F, et al. Dual-emitting Tm3+/Mn2+ co-doped glass ceramic for wide-range optical thermometer[J]. J Alloys Compd, 2020, 836: 155507.
[28] [28] LI X Y, QIU L T, CHEN Y L, et al. LiYF4-nanocrystal-embedded glass ceramics for upconversion: Glass crystallization, optical thermometry and spectral conversion[J]. RSC Adv, 2021, 11(4):2066–2073.
[29] [29] KANG S L, WANG W L, QIU J R, et al. Intense continuous-wave laser and mode-locked pulse operation from Yb3+-doped oxyfluoride glass–ceramic fibers[J]. J Am Ceram Soc, 2022, 105(8): 5203–5212.
[30] [30] BALDA R, BABU S, CABRAL A A, et al. KLaF4: Nd3 emission in transparent glass-ceramics[C]//2020 22nd International Conference on Transparent Optical Networks (ICTON). Bari, Italy. IEEE, 2020:1–4.
[31] [31] KANG S L, HUANG Z P, LIN W, et al. Enhanced single-mode fiber laser emission by nano-crystallization of oxyfluoride glass-ceramic cores[J]. J Mater Chem C, 2019, 7(17): 5155–5162.
[32] [32] VELáZQUEZ J J, GORNI G, BALDA R, et al. Non-linear optical properties of Er3+?Yb3+-doped NaGdF4 nanostructured glass-ceramics[J].Nanomaterials, 2020, 10(7): 1425.
[33] [33] SHINOZAKI K, ISHII Y, SUKENAGA S, et al. Ultrafast nanocrystallization of BaF2 in oxyfluoride glasses with crystal-like nanostructures: Implications for upconversion fiber devices[J]. ACS Appl Nano Mater, 2022, 5(3): 4281–4292.
[34] [34] RAGHUWANSHI V S, HOELL A, BOCKER C, et al. Experimental evidence of a diffusion barrier around BaF2 nanocrystals in a silicate glass system by ASAXS[J]. Cryst Eng Comm, 2012, 14(16): 5215–5223.
[35] [35] BOCKER C, HERRMANN A, LOCH P, et al. The nano-crystallization and fluorescence of terbium doped Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses[J]. J Mater Chem C, 2015,3(10): 2274–2281.
[36] [36] LIN C G, RüSSEL C, VAN WüLLEN L. Phase separation and nanocrystallization in KF-ZnF2-SiO2 glasses: Lessons from solid-state NMR[J]. J Phys Chem B, 2019, 123(7): 1688–1695.
[37] [37] HOELL A, RAGHUWANSHI V S, BOCKER C, et al.Crystallization of BaF2 from droplets of phase separated glass–evidence of a core–shell structure by ASAXS[J]. Cryst Eng Comm, 2020, 22(30): 5031–5039.
[38] [38] GORNI G, SERRANO A, BRAVO D, et al. Effect of dopant precursors on the optical properties of rare-earths doped oxyfluoride glass-ceramics[J]. J Am Ceram Soc, 2020, 103(7): 3930–3941.
[39] [39] BHATTACHARYYA S, H?CHE T, HEMONO N, et al. Nano-crystallization in LaF3-Na2O-Al2O3-SiO2 glass[J]. J Cryst Growth, 2009, 311(18): 4350–4355.
[40] [40] FANG Z J, LI J F, SUN L P, et al. In situ dopant-induced nano-crystallization of rare-earth-fluoride crystals in phase-separated networks for highly-efficient photoemission and photonic devices[J].J Mater Chem C, 2021, 9(28): 9001–9010.
[41] [41] BARROS J R, BOCKER C, RüSSEL C. The effect of Er3+ and Sm3+ on phase separation and crystallization in Na2O/K2O/BaF2/BaO/Al2O3/SiO2 glasses[J]. Solid State Sci, 2010, 12(12): 2086–2090.
[42] [42] CHEN Q P, SONG X Q, KANG S L, et al. The effect of alkali metal ions on crystallization characteristics and luminescent properties of transparent Er3+-doped fluorosilicate glass-ceramics[J]. J Non Cryst Solids, 2018, 496: 6–12.
[43] [43] KOEPKE C, WISNIEWSKI K, ?ELECHOWER M, et al. The role of phonons in the luminescence characteristics of SICLOF oxyfluoride glass and glass?ceramic fibers doped with Er3+/Yb3+[J]. J Lumin,2018, 204: 278–283.
[44] [44] WANG Z, HUANG F F, LI B P, et al. Enhanced luminescence properties of Ho/Yb ions regulated by the nanocrystalline environment and phonon energy in silicate glasses[J]. J Lumin, 2020,219: 116949.
[45] [45] KANG S L, YU H, OUYANG T C, et al. Novel Er3+/Ho3+-codoped glass-ceramic fibers for broadband tunable mid-infrared fiber lasers[J]. J Am Ceram Soc, 2018, 101(9): 3956–3967.
[46] [46] FU Y Q, KANG S L, GUAN S S, et al. Intense and broadband mid-infrared emission by nano-crystallization of rare-earth doped oxyfluoride glass-ceramic[J]. J Alloys Compd, 2022, 900: 163413.
[47] [47] YU M, ZHAO P, CHEN L, et al. Elaboration and mid-infrared emission of transparent glass ceramics containing highly crystallized KY3F10: Er3+ nanocrystals[J]. Ceram Int, 2023, 49(11): 17904–17909.
[48] [48] JHA A, SHEN S, NAFTALY M. Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses[J].Phys Rev B Condens Matter Mater Phys, 2000, 62(10): 6215–6227.
[49] [49] OISHI H, BENINO Y, KOMATSU T. Preparation and optical properties of transparent tellurite based glass ceramics doped by Er3+ and Eu3+[J]. Phys Chem Glasses, 1999, 40(4): 212–218.
[50] [50] XING Z J, LIU X Q, GAO S, et al. ~3 μm fluorescence behavior of Ho3+ doped transparent tellurite glass ceramics[J]. J Lumin, 2019, 215:116562.
[51] [51] LEMIERE A, BONDZIOR B, AROM?KI I, et al. Study of visible,NIR, and MIR spectroscopic properties of Er3+-doped tellurite glasses and glass–ceramics[J]. J Am Ceram Soc, 2022, 105(12): 7186–7195.
[52] [52] KANG S L, QIAO T, HUANG X J, et al. Enhanced CW lasing and Q-switched pulse generation enabled by Tm3+-doped glass ceramic fibers[J]. Adv Opt Mater, 2021, 9(3): 2001774.
[53] [53] PATRA P, KUMAR R, JAYANTHI K, et al. Ln2Te6O15 (Ln = La, Gd,and Eu) “anti-glass” phase-assisted lanthanum-tellurite transparent glass–ceramics: Eu3+ emission and local site symmetry analysis[J].Inorg Chem, 2022, 61(27): 10342–10358.
[54] [54] GUPTA G, BYSAKH S, BALAJI S, et al. Influence of Ho2O3 on optimizing nanostructured Ln2Te6O15 anti-glass phases to attain transparent TeO2-based glass-ceramics for mid-IR photonic applications[J]. Adv Eng Mater, 2020, 22(5): 1901357.
[55] [55] SANTOS BARBOSA J, BATISTA G, DANTO S, et al. Transparent glasses and glass-ceramics in the ternary system TeO2-Nb2O5-PbF2[J].Materials, 2021, 14(2): 317.
[56] [56] ZANANE H, VELáZQUEZ M, DENUX D, et al. Judd-Ofelt analysis and crystal field calculations of Er3+ ions in new oxyfluorogermanotellurite glasses and glass-ceramics[J]. Opt Mater,2020, 100: 109640.
[57] [57] RAJESH D, DE CAMARGO A S S. Nd3+ doped new oxyfluoro tellurite glasses and glass ceramics containing NaYF4 nano crystals– 1.06 μm emission analysis[J]. J Lumin, 2019, 207: 469–476.
[58] [58] BERTRAND A, CARREAUD J, DELAIZIR G, et al. New transparent glass-ceramics based on the crystallization of “anti-glass” spherulites in the Bi2O3-Nb2O5-TeO2 system[J]. Cryst Growth Des,2015, 15(10): 5086–5096.
[59] [59] GUPTA G, BALAJI S, BISWAS K, et al. Mid-IR transparent TeO2-TiO2-La2O3 glass and its crystallization behavior for photonic applications[J]. J Am Ceram Soc, 2018, 101(9): 3900–3916.
[60] [60] CHOLIN M, GENEVOIS C, CARLES P, et al. Highly transparent bismuth borotellurite glass?ceramics: Comprehension of crystallization mechanisms[J]. J Non Cryst Solids, 2022, 598: 121953.
[61] [61] CORMIER L. Nucleation in glasses–new experimental findings and recent theories[J]. Procedia Mater Sci, 2014, 7: 60–71.
[62] [62] WANG Y, HONMA T, KOMATSU T. Formation of nonlinear optical Na2TeW2O9 crystals and laser irradiation in tungsten–tellurite glasses[J]. J Asian Ceram Soc, 2017, 5(4): 489–493.
[63] [63] BERTRAND A, CARREAUD J, CHENU S, et al. Scalable and formable tellurite-based transparent ceramics for near infrared applications[J]. Adv Opt Mater, 2016, 4(10): 1482–1486.
[64] [64] MARQUES DE SOUZA J M, LIMA K O, FERRARI J L, et al.Photoluminescence properties of Er3+ and Er3+/Yb3+ doped tellurite glass and glass-ceramics containing Bi2Te4O11 crystals[J]. Dalton Trans, 2022, 51(10): 4087–4096.
[65] [65] KANG S L, CHEN D D, PAN Q W, et al. 2.7 μm emission in Er3+-doped transparent tellurite glass ceramics[J]. Opt Mater Express,2016, 6(6): 1861.
[66] [66] KANG S L, XIAO X D, PAN Q W, et al. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials[J]. Sci Rep, 2017, 7: 43186.
[67] [67] WEN S F, WANG Y P, LAN B J, et al. Pressureless crystallization of glass for transparent nanoceramics[J]. Adv Sci, 2019, 6(17): 1901096.
[68] [68] DOLHEN M, ALLIX M, SAROU-KANIAN V, et al. A comprehensive study of the glass/translucent anti-glass/transparent ceramic structural ordering in the Bi2O3-Nb2O5-TeO2 system[J]. Acta Mater, 2020, 189: 73–84.
[69] [69] ZHANG W J, CHEN Q J, ZHANG J P, et al. Enhanced NIR emission from nanocrystalline LaF3: Ho3+ germanate glass ceramics for E-band optical amplification[J]. J Alloys Compd, 2012, 541: 323–327.
[70] [70] ZHANG J P, ZHANG W J, YUAN J, et al. Enhanced 2.0μm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions[J]. J Am Ceram Soc, 2013, 96(12): 3836–3841.
[71] [71] LIN X T, LIANG H Z, LIU T Y, et al. Preparation, structure and optical properties of Nd2O3 doped Gd2O3-Ga2O3-GeO2 transparent glass?ceramics containing novel GdGaGe2O7 nanocrystal[J]. J Eur Ceram Soc, 2022, 42(13): 6135–6145.
[72] [72] MARCONDES L M, RAMOS DA CUNHA C, DE PIETRO G M, et al. Multicolor tunable and NIR broadband emission from rare-earth-codoped tantalum germanate glasses and nanostructured glass-ceramics[J]. J Lumin, 2021, 239: 118357.
[73] [73] AUZEL F, PECILE D, MORIN D. Rare earth doped vitroceramics:New, efficient, blue and green emitting materials for infrared up-conversion[J]. J Electrochem Soc, 1975, 122(1): 101–107.
[74] [74] HIRAO K, TANAKA K, MAKITA M, et al. Preparation and optical properties of transparent glass-ceramics containing β-PbF2: Tm3+[J]. J Appl Phys, 1995, 78(5): 3445–3450.
[75] [75] TIAN Y, LIU Q H, FEI E, et al. Structural evolution, crystallization behaviour and mid-infrared emission properties in Yb/Ho codoped oxyfluoride germanosilicate glass ceramics with varied Si/Ge ratio[J].Infrared Phys Technol, 2021, 116: 103741.
[76] [76] BENSALEM C, MORTIER M, VIVIEN D, et al. Optical investigation of Eu3+: PbF2 ceramics and transparent glass–ceramics[J]. Opt Mater, 2011, 33(6): 791–798.
[77] [77] MORTIER M. Nucleation and anionic environment of Er3+ in a germanate glass[J]. J Non Cryst Solids, 2003, 318(1/2): 56–62.
[78] [78] TAKAHASHI Y, OSADA M, MASAI H, et al. Nucleation and nanometric inhomogeneity in niobiogermanate glass: In-situ inelastic light scattering and TEM studies[J]. IOP Conf Ser: Mater Sci Eng,2011, 18(11): 112009.
[79] [79] DA CUNHA C R, MARCONDES L M, BATISTA G, et al.Crystallization of bronze-like perovskite in potassium tantalum germanate glasses: Glass ceramic preparation and its optical properties[J]. Opt Mater, 2021, 122: 111803.
[80] [80] PAN Z, UEDA A, MU R, et al. Upconversion luminescence in Er3+-doped germanate-oxyfluoride and tellurium-germanateoxyfluoride transparent glass-ceramics[J]. J Lumin, 2007, 126(1):251–256.
[81] [81] DANTELLE G, MORTIER M, PATRIARCHE G, et al. Er3+-doped PbF2: Comparison between nanocrystals in glass?ceramics and bulk single crystals[J]. J Solid State Chem, 2006, 179(7): 1995–2003.
[82] [82] DANTELLE G, MORTIER M, GOLDNER P, et al. EPR and optical study of Yb3+-doped β-PbF2 single crystals and nanocrystals of glass-ceramics[J]. J Phys: Condens Matter, 2006, 18(34): 7905–7922.
[83] [83] MORTIER M, PATRIARCHE G. Structural characterisation of transparent oxyfluoride glass-ceramics[J]. J Mater Sci, 2000, 35(19):4849–4856.
[84] [84] MORTIER M, AUZEL F. Rare-earth doped transparent glass-ceramics with high cross-sections[J]. J Non Cryst Solids, 1999,256–257: 361–365.
[85] [85] WU D, TANG B, CALVEZ L, et al. Upconversion luminescence of Er3+ ions in transparent germanate glass ceramics containing CaF2 nanocrystals[J]. Chin Phys Lett, 2010, 27(6): 067804.
[86] [86] ZHAO J T, HUANG L H, ZHAO S L, et al. Enhanced luminescence in Tb3+-doped germanate glass ceramic scintillators containing CaF2 nanocrystals[J]. J Am Ceram Soc, 2019, 102(4): 1720–1725.
[87] [87] WU G B, FAN S H, MA W X, et al. Intense 2.7 μm emission,lifetime and mechanism of Er3+: LaF3 nanocrystals embedded germanate oxyfluoride glass ceramics[J]. Sci Adv Mater, 2017, 9(3):343–348.
[88] [88] CHEN Z, CUI W T, KANG S L, et al. Fast–slow red upconversion fluorescence modulation from Ho3+-doped glass ceramics upon two-wavelength excitation[J]. Adv Opt Mater, 2017, 5(3): 1600554.
[89] [89] ZHANG W J, YU D C, ZHANG J P, et al. Near-infrared quantum splitting in Ho3+: LaF3 nanocrystals embedded germanate glass ceramic[J]. Opt Mater Express, 2012, 2(5): 636.
[90] [90] HU Y B, SHEN Y, ZHU C F, et al. Optical bandgap and luminescence in Er3+ doped oxyfluoro-germanate glass-ceramics[J]. J Non Cryst Solids, 2021, 555: 120533.
[91] [91] HU Y B, SHAO X Y, TAN L L, et al. Spectroscopic properties of Er3+-doped oxyfluoro-germanate glass ceramics: A Judd-Ofelt theory analysis[J]. J Non Cryst Solids, 2021, 574: 121167.
[92] [92] HU Y B, QIU S W, GAO Y, et al. Crystallization and spectroscopic properties in Er3+ doped oxyfluorogermanate glass ceramics containing Na[J]. Opt Mater, 2015, 45: 82–86.
[93] [93] LUO J, XIAO Z H, ZENG L W, et al. Germanate-based oxyfluoride transparent glass-ceramic embedded with Tm3+: Ca2YbF7 nanocrystals for high-performance optical thermometer[J]. Ceram Int,2023, 49(3): 4193–4203.
[94] [94] NASCIMENTO GUEDES L F, MARCONDES L M,EVANGELISTA R O, et al. Effect of alkaline modifiers on the structural, optical and crystallization properties of niobium germanate glasses and glass-ceramics[J]. Opt Mater, 2020, 105: 109866.
[95] [95] MARCONDES L M, RODRIGUES L, RAMOS DA CUNHA C, et al.Rare-earth ion doped niobium germanate glasses and glass-ceramics for optical device applications[J]. J Lumin, 2019, 213: 224–234.
[96] [96] DING D S, GAO J, ZHANG S Q, et al. The photoluminescence properties of Pr3+?Yb3+ co-doped gallo-germanate glasses and glass ceramics as energy converter[J]. J Lumin, 2020, 226: 117512.
[97] [97] FANG Z J, XIAO X S, WANG X, et al. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers[J]. Sci Rep, 2017, 7: 44456.
[98] [98] TICK P A. Are low-loss glass–ceramic optical waveguides possible?[J]. Opt Lett, 1998, 23(24): 1904–1905.
[99] [99] AUGUSTYN E, ?ELECHOWER M, STRó? D, et al. The microstructure of erbium–ytterbium co-doped oxyfluoride glass–ceramic optical fibers[J]. Opt Mater, 2012, 34(6): 944–950.
[100] [100] GORNI G, VELáZQUEZ J J, KOCHANOWICZ M, et al. Tunable upconversion emission in NaLuF4-glass-ceramic fibers doped with Er3+ and Yb3[J]. RSC Adv, 2019, 9(54): 31699–31707.
[101] [101] PENG W C, FANG Z J, MA Z J, et al. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb3+?Er3+codoped CaF2nanocrystals[J]. Nanotechnology, 2016,27(40): 405203.
[102] [102] KANG S L, FANG Z J, HUANG X J, et al. Precisely controllable fabrication of Er3+-doped glass ceramic fibers: Novel mid-infrared fiber laser materials[J]. J Mater Chem C, 2017, 5(18): 4549–4556.
[103] [103] OUYANG T C, KANG S L, ZHANG Z S, et al. Microlaser output from rare-earth ion-doped nanocrystal-in-glass microcavities[J]. Adv Opt Mater, 2019, 7(21): 1900197.
[104] [104] KANG S L, OUYANG T C, YANG D D, et al. Enhanced 2μm mid-infrared laser output from Tm3+-activated glass ceramic microcavities[J]. Laser Photon Rev, 2020, 14(5): 1900396.
[105] [105] WANG W, CHEN Q P, ZHAO Y F, et al. PbS quantum dots and BaF2: Tm3+ nanocrystals Co-doped glass for ultra-broadband near-infrared emission[J]. Chin Opt Lett, 2022, 20(2): 021603.
[106] [106] WANG S X, ZHU J W, HE Y W, et al. Invisible NIR spectral imaging and laser-induced thermal imaging of Na(Nd/Y)F4@glass with opposite effect for optical security[J]. Laser Photon Rev, 2022,16(8): 2200039.
Get Citation
Copy Citation Text
YE Shengda, CHEN Jianhao, HUANG Xiongjian, DONG Guoping. Research Progress in Rare-Earth Ion-Doped Infrared Glass Ceramic Luminescent Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2527
Category:
Received: Jan. 31, 2024
Accepted: --
Published Online: Dec. 4, 2024
The Author Email: Guoping DONG (dgp@scut.edu.cn)