Journal of Inorganic Materials, Volume. 39, Issue 11, 1212(2024)
[1] Q WU, Y XUE, S CHAO et al. Moiré superlattice MXene nanosheets constructed from twisted hexagon-Ti3AlC2 by microwave-assisted Lewis molten salt etching: implications for structural stability in electrochemical energy storage. ACS Applied Nano Materials, 677(2022).
[3] Z XU, M WU, Z CHEN et al. Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Advanced Science, 1802272(2019).
[4] J LIANG, A RAWAL, M YU et al. Low-potential solid-solid interfacial charging on layered polyaniline anode for high voltage pseudocapacitive intercalation Li-ion supercapacitors. Nano Energy, 108010(2023).
[5] H TANG, J YAO, Y ZHU. Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Advanced Energy Materials, 2003994(2021).
[6] T LI, H ZHAO, C LI et al. Recent progress and prospects in anode materials for potassium-ion capacitors. New Carbon Materials, 253(2021).
[7] Y CUI, L ZHAO, B LI et al. Tailored MoS2 bilayer grafted onto N/S-doped carbon for ultra-stable potassium-ion capacitor. Chemical Engineering Journal, 137815(2022).
[8] B ANASORI, M R LUKATSKAVA, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 16098(2017).
[9] M R LUKATSKAVA, S KOTA, Z LIN et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 17105(2017).
[10] S WAN, X LI, Y CHEN et al. Ultrastrong MXene films
[11] Y MENG, P ZENG, X Y YANG et al. Simultaneously achieving enhanced water adsorption and rapid adsorbed hydroxyl transfer toward MXene-based materials for highly efficient alkaline electrocatalytic hydrogen evolution. Chemical Engineering Journal, 143372(2023).
[12] L LIU, H ZSCHIESCHE, M ANTONIETTI et al. Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt. Advanced Energy Materials, 2202709(2023).
[13] L LI, Q F CHENG. Recent advances in the high performance MXenes nanocomposites. Journal of Inorganic Materials, 153(2024).
[14] X WANG, N LI, J YIN et al. Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing. Science China Materials, 272(2023).
[15] Z PAN, Y JIANG, P YANG et al.
[16] K LI, J LI, Q ZHU et al. Three-dimensional MXenes for supercapacitors: a review. Small Methods, 2101537(2022).
[18] J LUO, C WANG, H WANG et al. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Advanced Functional Materials, 1805946(2019).
[19] J ZHAO, J WEN, J XIAO et al. Nb2CT
[20] Y TIAN, W QUE, Y LUO et al. Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. Journal of Materials Chemistry A, 5416(2019).
[21] Z ZOU, Q WANG, K ZHU et al. Ultrathin-walled Bi2S3 nanoroll/MXene composite toward high capacity and fast lithium storage. Small, 2106673(2022).
[22] J CHEN, Y REN, H ZHANG et al. Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor. Applied Surface Science, 150116(2021).
[23] H TANG, W CHEN, N LI et al. Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage. Energy Storage Materials, 335(2022).
[24] M HAN, J YAO, J HUANG et al. Synergistic chemical and electrochemical strategy for high-performance Zn//MnO2 batteries. Chinese Chemical Letters, 107493(2023).
[25] J WANG, W GUO, Z LIU et al. Engineering of self-aggregation- resistant MnO2 heterostructure with a built-in field for enhanced high-mass-loading energy storage. Advanced Energy Materials, 2300224(2023).
[26] Y DAI, J ZHANG, X YAN et al. Investigating the electrochemical performance of MnO2 polymorphs as cathode materials for aqueous proton batteries. Chemical Engineering Journal, 144158(2023).
[27] X L LI, J F ZHU, Y H JIAO et al. Manganese dioxide morphology on electrochemical performance of Ti3C2T
[28] Y TANG, S ZHENG, Y XU et al. Advanced batteries based on manganese dioxide and its composites. Energy Storage Materials, 284(2018).
[29] J WANG, J G WANG, H LIU et al. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. Journal of Materials Chemistry A, 13727(2019).
[30] J JABLONSKIENE, D SIMKUNAITE, J VAICIUNIENE et al. Synthesis of carbon-supported MnO2 nanocomposites for supercapacitors application. Crystals, 784(2021).
[31] S J CLARK, M D SEGALL, C J PICKAD et al. First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 567(2005).
[32] M YU, S YANG, C WU et al. Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization. npj Computational Materials, 180(2020).
[34] X ZHU, Z CAO, W WANG et al. Superior-performance aqueous zinc-ion batteries based on the
[35] D WANG, Y GAO, Y LIU et al. Investigation of chloride ion adsorption onto Ti2C MXene monolayers by first-principles calculations. Journal of Materials Chemistry A, 24720(2017).
[36] C XU, B XU, Y GU et al. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 1388(2013).
[37] S XI, X CHENG, X GAO et al. Simple fabrication of Ti3C2/MnO2 composites as cathode material for high capacity and long cycle lifespan Zn-ion batteries. Energy Technology, 2300122(2023).
[38] Q WANG, H YUAN, M ZHANG et al. A highly conductive and supercapacitive MXene/N-CNT electrode material derived from a MXene-Co-melamine precursor. ACS Applied Electronic Materials, 2506(2023).
[39] S YAN, Q WANG, S LUO et al. Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium- ion batteries. Journal of Power Sources, 228151(2020).
[40] L SI, Q XIA, K LIU et al. Hydrothermal synthesis of layered NiS2/Ti3C2T
[41] X HONG, C DENG, X WANG et al. Carbon nanosheets/MnO2/ NiCo2O4 ternary composite for supercapacitor electrodes. Journal of Energy Storage, 105086(2022).
[42] J KUNWAR, D ACHARYA, K CHHETRI et al. Cobalt oxide decorated 2D MXene: a hybrid nanocomposite electrode for high- performance supercapacitor application. Journal of Electroanalytical Chemistry, 117915(2023).
[43] Y LUO, C YANG, Y TIAN et al. A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) nanohybrid and MXene electrodes. Journal of Power Sources, 227694(2020).
[44] X ZHANG, F ZHANG, D WEI et al. Design and synthesis of K-doped tremella-like
[45] Y FENG, M ZHANG, H YAN et al. Microwave-assisted efficient exfoliation of MXene and its composite for high-performance supercapacitors. Ceramics International, 9518(2022).
[46] Y ZHANG, P CHEN, Q WANG et al. High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure. Advanced Energy Materials, 2101712(2021).
[47] S WEN, J W LEE, I H YEO et al. The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2. Electrochimica Acta, 849(2004).
[48] L SONG, Y DUAN, Y ZHANG et al. Promoting defect formation and microwave loss properties in
[49] Y ZHOU, Z ZHOU, L HU et al. A facile approach to tailor electrocatalytic properties of MnO2 through tuning phase transition, surface morphology and band structure. Chemical Engineering Journal, 135561(2022).
[50] M X XIAO, M M LI, E H SONG et al. Halogenated Ti3C2 MXene as high capacity electrode material for Li-ion batteries. Journal of Inorganic Materials, 660(2022).
[51] X JIN, S J SHIN, N KIM et al. Superior role of MXene nanosheet as hybridization matrix over graphene in enhancing interfacial electronic coupling and functionalities of metal oxide. Nano Energy, 841(2018).
Get Citation
Copy Citation Text
Shaofei CHAO, Yanhui XUE, Qiong WU, Fufa WU, Sufyan Javed MUHAMMAD, Wei ZHANG.
Category:
Received: Mar. 19, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: WU Qiong (wuqiong9918@126.com)