Acta Optica Sinica, Volume. 42, Issue 17, 1723002(2022)

Variable Curvature Mirror with Variable Thickness and Its Application in Space-Borne Optical Camera

Hui Zhao1、*, Xiaopeng Xie1, Limin Gao2, Xuewu Fan1, Liang Xu3, Zhen Ma3, and Yongle Pei4
Author Affiliations
  • 1Space Optical Technology Research Department, Xi′an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi′an710119, Shaanxi, China
  • 2Chief Engineer Office, Xi′an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi′an710119, Shaanxi, China
  • 3Advanced Optics Manufacturing Center, Xi′an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi′an710119, Shaanxi, China
  • 4Laboratory of Aeronautical Optoelectronic Technology, Xi′an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi′an710119, Shaanxi, China
  • show less
    References(38)

    [1] Bin-Nun E, Dothan-Deutsch F. Mirror with adjustable radius of curvature[J]. Review of Scientific Instruments, 44, 512-513(1973).

    [2] Apollonov V V, Vdovin G V, Ostrovskaya L M et al. Active correction of a thermal lens in a solid-state laser. I. Metal mirror with a controlled curvature of the central region of the reflecting surface[J]. Soviet Journal of Quantum Electronics, 21, 116-118(1991).

    [3] Volyak T B, Krasjuk I K, Pashinin P P. Adaptive mirror for large-aperture laser beams[J]. Proceedings of SPIE, 0473, 280-283(1985).

    [4] Belomestnov P I, Vyazovich E I, Soloukhin R I et al. Tunable resonator with a mirror of variable curvature[J]. Soviet Journal of Quantum Electronics, 3, 347-348(1974).

    [5] Greiner U J, Klingenberg H H. Thermal lens correction of a diode-pumped Nd∶YAG laser of high TEM00 power by an adjustable-curvature mirror[J]. Optics Letters, 19, 1207-1209(1994).

    [6] Jarosch U K. Adaptive metal mirror for high-power CO2 lasers[J]. Proceedings of SPIE, 2774, 457-467(1996).

    [7] Okada T, Ebata K, Shiozaki M et al. Development of adaptive mirror for CO2 laser[J]. Proceedings of SPIE, 3888, 509-520(2000).

    [8] Okada T. Variable-curvature reflecting mirror[P].

    [9] Miks A, Novak J, Novak P. Theoretical analysis of imaging properties of a pressure-actuated deformable mirror for adaptive compensation of rotationally symmetrical wavefronts[J]. Optics and Lasers in Engineering, 49, 1268-1273(2011).

    [10] Rabczuk G T, Sawczak M. Conditions for the dynamic control of the focusing properties of the high-power CW CO2 laser beam in a system with an adaptive mirror[J]. Proceedings of SPIE, 5449, 149-154(2004).

    [11] Rabczuk G T, Sawczak M. High-power cw CO2 laser beam properties in a system with a variable focal length mirror[J]. Proceedings of SPIE, 5481, 37-42(2004).

    [12] Rabczuk G T, Sawczak M. Output characteristics of a high-power cw CO2 laser with a dynamic control of the optical cavity configuration[J]. Proceedings of SPIE, 5230, 183-188(2003).

    [13] Warwick T, Howells M, Shlezinger M. A variable radius mirror for imaging the exit slit of a spherical grating monochromator undulator beamline at the ALS[J]. Review of Scientific Instruments, 66, 2270-2272(1995).

    [14] Schwarz J, Geissel M, Rambo P et al. Development of a variable focal length concave mirror for on-shot thermal lens correction in rod amplifiers[J]. Optics Express, 14, 10957-10969(2006).

    [15] Schwarz J, Ramsey M, Headley D et al. Thermal lens compensation by convex deformation of a flat mirror with variable annular force[J]. Applied Physics B, 82, 275-281(2006).

    [16] Penado Ernesto F, Clark J H, Heilman M et al. Experimental verification of compliant mirror wavefront correction using a single actuator[J]. Proceedings of SPIE, 10747, 1074708(2018).

    [17] Lemaitre G R. Mirror with a variable focal distance[P].

    [18] Hugot E, Madec F, Vives S et al. Active laser guide star refocusing system for EAGLE instrument[C], 04008(2010).

    [19] Ferrari M, Lemaitre G R. Active optics methods for highly aspheric mirrors: manufacturing the quaternary mirror of the OWL project[J]. Proceedings of SPIE, 4003, 34-42(2000).

    [20] Gong M L, Hu Z Y, Huang L et al. Device for adjusting curvature radius of reflector[P].

    [21] Feng Z Q, Bai L, Zhang Z B et al. Thermal deformation compensation of high-energy laser mirrors[J]. Optics and Precision Engineering, 18, 1781-1787(2010).

    [22] Zhang Z G, Zhang Z B, Jin Y Q. Curvature-variable reflector device[P].

    [23] Zhang Z G, Xiong M D, Zhang Z B et al. Research of single crystal silicon mirror with variable curvature controlled by a single actuator[J]. Laser Technology, 36, 280-284(2012).

    [24] Lu X Y, Zhang Y N, Cheng Z H. Flexible focus variable expander[J]. Proceedings of SPIE, 3550, 419-424(1998).

    [25] Zhao H, Xie X P, Wei J X et al. Annular force based variable curvature mirror aiming to realize non-moving element optical zooming[J]. Proceedings of SPIE, 9678, 967807(2015).

    [26] Zhao H, Xie X P, Xu L et al. Variable curvature mirror having variable thickness: design and fabrication[J]. Proceedings of SPIE, 10463, 104631D(2017).

    [27] Zhao H, Xie X P, Xu L et al. Performance comparison between two kinds of variable curvature mirrors: mathematical analysis, prototype design, experimental demonstration, and application potentials in realizing non-moving element optical zooming[J]. Proceedings of SPIE, 10837, 108371C(2019).

    [28] Xie X P, Xu L, Wang Y J et al. Solving, analyzing, manufacturing, and experimental testing of thickness distribution for a cycloid-like variable curvature mirror[J]. Optics Express, 29, 18010-18025(2021).

    [30] Dowty J R. Method for adjusting the radius of curvature of a spherical mirror[P].

    [31] Timoshenko S, Woinowsky-Krieger S[M]. Theory of plates and shells(1959).

    [32] Lemaitre G R[M]. Astronomical optics and elasticity theory: active optics methods(2009).

    [33] Seidl K, Knobbe J, Grüger H. Design of an all-reflective unobscured optical-power zoom objective[J]. Applied Optics, 48, 4097-4107(2009).

    [34] Seidl K, Richter K, Knobbe J et al. Wide field-of-view all-reflective objectives designed for multispectral image acquisition in photogrammetric applications[J]. Proceedings of SPIE, 8172, 817210(2011).

    [35] Zhang T C, Liu L P, Chang J et al. Design of infrared zoom system with 4 reflective mirrors[J]. Journal of Infrared Millimeter Waves, 29, 196-199(2010).

    [36] Shen B L, Chang J, Wang X et al. Design of the active zoom system with three-mirror[J]. Acta Physica Sinica, 63, 144201(2014).

    [37] Kuthirummal S, Nagahara H, Zhou C Y et al. Flexible depth of field photography[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 58-71(2011).

    [38] Dowski E R, Cathey W T. Extended depth of field through wave-front coding[J]. Applied Optics, 34, 1859-1866(1995).

    [39] Demenikov M, Harvey A R. Image artifacts in hybrid imaging systems with a cubic phase mask[J]. Optics Express, 18, 8207-8212(2010).

    Tools

    Get Citation

    Copy Citation Text

    Hui Zhao, Xiaopeng Xie, Limin Gao, Xuewu Fan, Liang Xu, Zhen Ma, Yongle Pei. Variable Curvature Mirror with Variable Thickness and Its Application in Space-Borne Optical Camera[J]. Acta Optica Sinica, 2022, 42(17): 1723002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: May. 30, 2022

    Accepted: Jul. 22, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Zhao Hui (zhaohui@opt.ac.cn)

    DOI:10.3788/AOS202242.1723002

    Topics