Spectroscopy and Spectral Analysis, Volume. 44, Issue 12, 3524(2024)
Research on the Inverse Model of Paper Viscosity Based on Hyperspectral Data
[5] [5] Balas C, Papadakis V, Papadakis N, et al. Journal of Cultural Heritage, 2003, 4(S1): 330.
[6] [6] Sun M, Zhang D, Wang Z, et al. Scientific Reports, 2015, 5: 14371.
[8] [8] Vermeulen M, Miranda A S O, Tamburini D, et al. Heritage Science, 2022, 10(1): 44.
[15] [15] Guo Guodong, Fu Yun, Dyer Charles R, et al. IEEE Transactions on Image Processing, 2008, 17(7): 1178.
[16] [16] Breiman L. Machine Learning, 1996, 24: 123.
[17] [17] Chen T, Guestrin C. XGBoot: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016: 785.
[18] [18] Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: Unbiased Boosting With Categorical Features, Proceedings of the 32nd International Conference on Neural Information Processing Systems,2017: 6639.
Get Citation
Copy Citation Text
WANG Sa, QU Liang, ZHANG Li-fu, GAO Yu, LI Guang-hua, CHANG Jing-jing. Research on the Inverse Model of Paper Viscosity Based on Hyperspectral Data[J]. Spectroscopy and Spectral Analysis, 2024, 44(12): 3524
Received: Nov. 14, 2023
Accepted: Jan. 16, 2025
Published Online: Jan. 16, 2025
The Author Email: Liang QU (quliang@dpm.org.cn)