Acta Photonica Sinica, Volume. 47, Issue 6, 610001(2018)

Hyperspectral Image Classification with Combination of Sparse Characteristic and Neighborhood Similarity Metrics

LIU Jia-min*, ZHANG Li-mei, SHI Guang-yao, and HUANG Hong
Author Affiliations
  • [in Chinese]
  • show less
    References(22)

    [1] [1] DU Pei-jun, XIA Jun-shi, XUE Chao-hui, et al. Progress of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2): 236-256.

    [2] [2] DU Bo, HUANG Zhi-qiang, WANG Nan,et al. Joint weighted nuclear norm and total variation regularization for hyperspectral image denoising[J]. International Journal of Remote Sensing, 2018, 39(2): 334-355.

    [3] [3] LI Xue, ZHANG Liang-pei, DU Bo,et al. Iterative reweighting heterogeneous transfer learning framework for supervised remote sensing image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2022-2035.

    [4] [4] SHI Qian, DU Bo, ZHANG Liang-pei. Spatial coherence-based batch-mode active learning for remote sensing image classification[J].IEEE Transactions on Image Processing, 2015, 24(7): 2037.

    [5] [5] DU Bo, ZHANG Meng-fei, ZHANG Le-fei, et al. PLTD: Patch-based low-rank tensor decomposition for hyperspectral images[J]. IEEE Transactions on Multimedia, 2017, 19(1): 67-79.

    [7] [7] ZHAO Wen-zhi, GUO Zhou, YUE Jun,et al. On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery[J]. International Journal of Remote Sensing, 2015, 36(13): 3368-3379.

    [8] [8] HUANG Hong, ZHENG Xin-lei, LUO Fu-lin.Hyperspectral image classification with combination of weighted mean filter and manifold reconstruction preserving embedding[J]. Acta Photonica Sinica, 2016, 45(10): 146-154.

    [9] [9] TONG Qing-xi, ZHANG Bing, ZHANG Li-fu,et al. Current progress of hyperspectral remote sensing in China[J]. Journal of remote sensing, 2016, 20(5): 689-707.

    [10] [10] HU Wei, HUANG Yang-yu, WEI Li,et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015(2): 1-12.

    [11] [11] BO Chun-juan, LU Hu-chuan, DONG Wang. Weighted generalized nearest neighbor for hyperspectral image classification[J].IEEE Access, 2017, PP(99): 1-1.

    [12] [12] CAMPS-VALL G. Kernel spectral angle mapper[J]. Electronics Letters, 2016, 52(14): 1218-1220.

    [13] [13] LI Da-wei, YANG Feng-bao, WANG Xiao-xia. Multisource remote sensing classification based on random forest and adaptive weighted D-S evidence synthesis[J].Laser and Optoelectronics Progress, 2016, 53(3): 031001.

    [14] [14] BANERJEE A, BURLINA P, DIEHL C. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2282-2291.

    [15] [15] WRIGHT J, YANG A Y, GANESH A,et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210.

    [16] [16] SPARRER S, FISCHER R F H. MMSE-based version of OMP for recovery of discrete-valued sparse signals[J]. Electronics Letters, 2015, 52(1): 75-77.

    [17] [17] LUO Fu-lin, HUANG Hong, LIU Jia-min,et al. Fusion of graph embedding and sparse representation for feature extraction and classification of hyperspectral imagery[J]. Photogrammetric Engineering and Remote Sensing, 2017, 83(1): 37-46.

    [18] [18] LI Wei, DU Qian, ZHANG Fan,et al. Hyperspectral image classification by fusing collaborative and sparse representations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4178-4187.

    [19] [19] YANG Jing-hui, WANG Li-guo, QIAN Jin-xi. A new residual fusion classification method for hyperspectral images[J]. International Journal of Remote Sensing, 2016, 37(4): 745-769.

    [20] [20] CUI M, PRASAD S. Class-Dependent sparse representation classifier for robust hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2683-2695.

    [21] [21] WEI Q, BIOUCAS-DIAS J, DOBIGEON N,et al. Hyperspectral and multispectral image fusion based on a sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3658-3668.

    [22] [22] ZHANG Fei-fei, SUN Xu, XUE Liang-yong,et al. Hyperspectral mixed pixel decomposition policy merging simple linear iterative clustering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 199-206.

    CLP Journals

    [1] CHENG Baozhi, YANG Guihua, WANG Fengpin, JIA Meijuan. Algorithm of RX anomaly target detection for hyperspectral imagery based on low-rank tensor decomposition[J]. Optical Technique, 2022, 48(3): 379

    [2] ZENG Hai-jin, JIANG Jia-wei, ZHAO Jia-jia, WANG Yi-zhuo, XIE Xiao-zhen. L1-2 Spectral-spatial Total Variation Regularized Hyperspectral Image Denoising[J]. Acta Photonica Sinica, 2019, 48(10): 1010002

    Tools

    Get Citation

    Copy Citation Text

    LIU Jia-min, ZHANG Li-mei, SHI Guang-yao, HUANG Hong. Hyperspectral Image Classification with Combination of Sparse Characteristic and Neighborhood Similarity Metrics[J]. Acta Photonica Sinica, 2018, 47(6): 610001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 13, 2017

    Accepted: --

    Published Online: Sep. 7, 2018

    The Author Email: Jia-min LIU (liujm@cqu.edu.cn)

    DOI:10.3788/gzxb20184706.0610001

    Topics