Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 161(2024)

Self-Driven Photoresponse and Resistive Switching Effects of Pt/Ga2O3/Nb:SrTiO3 Optoelectronic Devices

ZHANG Teng1... ZHANG Yuan1, REN Dahua1, LI Qiang1, YU Jiying1, ZHOU Jinneng2 and YI Jinqiao1,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(37)

    [1] [1] ZHANG C, LIU K W, AI Q, et al. High-performance fully transparent Ga2O3 solar-blind UV photodetector with the embedded indium-tin-oxide electrodes[J]. Mater Today Phys, 2023, 33: 101034.

    [2] [2] LI S, YUE J Y, JI X Q, et al. Oxygen vacancies modulating the photodetector performances in ε-Ga2O3 thin films[J]. J Mater Chem C, 2021, 9(16): 5437-5444.

    [3] [3] KIM S, KIM J. Highly selective ozone-treated β-Ga2O3 solar-blind deep-UV photodetectors[J]. Appl Phys Lett, 2020, 117(26): 261101.

    [4] [4] ZHANG J Y, SHI J L, QI D C, et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3[J]. APL Mater, 2020, 8(2): 020906.

    [5] [5] CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photon Res, 2019, 7(4): 381.

    [6] [6] KOKUBUN Y, MIURA K, ENDO F, et al. Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors[J]. Appl Phys Lett, 2007, 90(3): 031912.

    [7] [7] XIE C, LU X T, TONG X W, et al. Ultrawide-bandgap semiconductors: recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors[J]. Adv Funct Mater, 2019, 29(9): 1806006.

    [8] [8] FANG H J, ZHENG C, WU L L, et al. Transparent electronics: Solution-processed self-powered transparent ultraviolet photodetectors with ultrafast response speed for high-performance communication system[J]. Adv Funct Mater, 2019, 29(20): 1809013.

    [9] [9] KYRTSOS A, MATSUBARA M, BELLOTTI E. On the feasibility of p-type Ga2O3[J]. Appl Phys Lett, 2018, 112(3): 032108.

    [10] [10] LI P G, SHI H Z, CHEN K, et al. Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector[J]. J Mater Chem C, 2017, 5(40): 10562-10570.

    [11] [11] NAKAGOMI S, SAKAI T, KIKUCHI K, et al. β-Ga2O3/p-type 4H-SiC heterojunction diodes and applications to deep-UV photodiodes[J]. Phys Status Solidi A, 2019, 216(5): 1700796.

    [12] [12] ZHAO B, WANG F, CHEN H Y, et al. An ultrahigh responsivity (9.7 mA-W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures[J]. Adv Funct Mater, 2017, 27(17): 1700264.

    [13] [13] CHEN Y C, LU Y J, LIN C N, et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging[J]. J Mater Chem C, 2018, 6(21): 5727-5732.

    [14] [14] MAHMOUD W E. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film[J]. Sol Energy Mater Sol Cells, 2016, 152: 65-72.

    [15] [15] GAO X, XIA Y D, JI J F, et al. Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films[J]. Appl Phys Lett, 2010, 97(19): 721.

    [16] [16] AOKI Y, WIEMANN C, FEYER V, et al. Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour[J]. Nat Commun, 2014, 5: 3473.

    [17] [17] WANG P C, LI P G, ZHI Y S, et al. Bias tuning charge-releasing leading to negative differential resistance in amorphous gallium oxide/Nb: SrTiO3 heterostructure[J]. Appl Phys Lett, 2015, 107(26): 262110.

    [18] [18] GUO D Y, WU Z P, AN Y H, et al. Unipolar resistive switching behavior of amorphous gallium oxide thin films for nonvolatile memory applications[J]. Appl Phys Lett, 2015, 106(4): 042105.

    [19] [19] GUO D Y, WU Z P, ZHANG L J, et al. Abnormal bipolar resistive switching behavior in a Pt/GaO1.3/Pt structure[J]. Appl Phys Lett, 2015, 107(3): 032104.

    [21] [21] QIAN L X, LIU H Y, ZHANG H F, et al. Simultaneously improved sensitivity and response speed of β-Ga2O3 solar-blind photodetector via localized tuning of oxygen deficiency[J]. Appl Phys Lett, 2019, 114(11): 113506.

    [22] [22] ZHANG T, LI M K, CHEN J A, et al. Multi-component ZnO alloys: Bandgap engineering, hetero-structures, and optoelectronic devices[J]. Mater Sci Eng R Rep, 2022, 147: 100661.

    [23] [23] ZHONG Z Y, ZHANG T. Microstructure and optoelectronic properties of titanium-doped ZnO thin films prepared by magnetron sputtering[J]. Mater Lett, 2013, 96: 237-239.

    [24] [24] PALAFERRI D, TODOROV Y, BIGIOLI A, et al. Room-temperature nine-μm-wavelength photodetectors and GHz-frequency heterodyne receivers[J]. Nature, 2018, 556(7699): 85-88.

    [25] [25] GONG X, TONG M H, XIA Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1 450 nm[J]. Science, 2009, 325(5948): 1665-1667.

    [26] [26] FARZANA E, ZHANG Z, PAUL P K, et al. Influence of metal choice on (010) β-Ga2O3 Schottky diode properties[J]. Appl Phys Lett, 2017, 110(20): 202102.

    [27] [27] TAK B R, DEWAN S, GOYAL A, et al. Point defects induced work function modulation of β-Ga2O3[J]. Appl Surf Sci, 2019, 465: 973-978.

    [28] [28] QIAN L X, WU Z H, ZHANG Y Y, et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide[J]. ACS Photon, 2017, 4(9): 2203-2211.

    [29] [29] HOU Y N, MEI Z X, DU X L. Semiconductor ultraviolet photodetectors based on ZnO and MgxZn1-xO[J]. J Phys D: Appl Phys, 2014, 47(28): 283001.

    [30] [30] DONG L P, YU J G, JIA R X, et al. Self-powered MSM deep-ultraviolet β-Ga2O3 photodetector realized by an asymmetrical pair of Schottky contacts[J]. Opt Mater Express, 2019, 9(3): 1191.

    [31] [31] GUO D Y, LIU H, LI P G, et al. Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction[J]. ACS Appl Mater Interfaces, 2017, 9(2): 1619-1628.

    [32] [32] PRATIYUSH A S, KRISHNAMOORTHY S, KUMAR S, et al. Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector[J]. Jpn J Appl Phys, 2018, 57(6): 060313.

    [33] [33] LIU Z, WANG X, LIU Y Y, et al. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 Schottky photodiode[J]. J Mater Chem C, 2019, 7(44): 13920-13929.

    [34] [34] ALEMA F, HERTOG B, MUKHOPADHYAY P, et al. Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film[J]. APL Mater, 2019, 7(2): 022527.

    [36] [36] KAWAI M, ITO K, SHIMAKAWA Y. Resistance switching in a single-crystalline NiO thin film grown on a Pt0.8Ir0.2 electrode[J]. Appl Phys Lett, 2009, 95(1): 012109.

    [37] [37] ZHANG J A, YANG H, ZHANG Q L, et al. Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition[J]. Appl Phys Lett, 2013, 102(1): 012113.

    [38] [38] YALISHEV V S, KIM Y S, PARK B H, et al. Resistance states dependence of photoluminescence in Ag/ZnO/Pt structures[J]. Appl Phys Lett, 2011, 99(1): 957.

    [39] [39] LUO Z P, PEI L, LI M Y, et al. Electric field-induced resistive switching, magnetism, and photoresponse modulation in a Pt/Co0.03Zn0.97O/Nb: SrTiO3 multi-function heterostructure[J]. Appl Phys Lett, 2018, 112(15): 153504.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Teng, ZHANG Yuan, REN Dahua, LI Qiang, YU Jiying, ZHOU Jinneng, YI Jinqiao. Self-Driven Photoresponse and Resistive Switching Effects of Pt/Ga2O3/Nb:SrTiO3 Optoelectronic Devices[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 161

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 16, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: Jinqiao YI (2014017@hbmzu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics